100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Math Fourier Transforms - 2007 Revision Notes

Beoordeling
-
Verkocht
-
Pagina's
7
Geüpload op
06-05-2023
Geschreven in
2007/2008

University of Cambridge - Part IB Natural Sciences Mathematics: notes on complex analysis, fourier transforms, Green's functions, linear algebra, ordinary differential equations, Poisson's equation

Instelling
Vak









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Vak

Documentinformatie

Geüpload op
6 mei 2023
Aantal pagina's
7
Geschreven in
2007/2008
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Page 1 of 7



Fourier Transforms
Introduction
 A periodic signal can be analysed into its harmonic
components by calculating its Fourier Series. If the
period is P, then the harmonics have frequency n/P,
where n is an integer.
 The Fourier Transform generalises this idea to
functions that are not periodic; the ‘harmonics’ can
have any frequency.


Fourier Series
 A function f(x) with period P (ie: f(x + P) = f(x) for
all x) can be written as a Fourier Series
¥ ¥
1
f (x ) = a 0 + å an cos(kn x ) + å bn sin(kn x ) (*)
2 n =1 n =1

Where kn = 2pn / P is the wavenumber of the nth
harmonic and
2
P òover one period
an = f (x )cos(kn x ) dx
2
bn = ò f (x )sin(kn x ) dx
P over one period
 This can be proved by multiplying both sides of (*) by
cos(kn x ) and sin(kn x ) , integrating over a period and
using the orthogonality relations:

ò one period
sin(kr x )cos(k p x ) dx = 0 " r, p
ì
ï 2L
1
r =p>0
ï
òone period sin(k r x )sin(k p x ) d x = í
ï
ï 0 otherwise
î
ì
ï L r =p=0
ï
ï
ï1
òone period cos(kr x )cos(kpx ) dx = íïï 2 L r =p>0
ï
ï 0 r¹p
ï
î
 It saves time to remember that
o For even functions, all the bn = 0.



Maths Revision Notes © Daniel Guetta, 2007

, Page 2 of 7

o For odd functions, all the an = 0.
 Fourier Series can also be found by differentiation and
integration:
o Integrating or differentiating a Fourier series
term-by-term leads to the differential or the
integral of the original function.
o It is important to remember the arbitrary
constant when integrating.
o When integrating, the result will include an ‘x’
term. This means that the expression isn’t,
strictly speaking, a Fourier series. An
alternative expression needs to be found for the
x term (perhaps by differentiating…)
 If we define
ì
ï
ïa-n + ib-n n <0

ï
cn = ïí a0 n=0

ï
ï
ï a - ibn n>0
ï n
î
Then we can express our results more simply in terms
of a complex Fourier series:
¥
f (x ) = åce
n =-¥
n
ikn x
(#)

Where kn is as above, and
1
cn = ò f (x )e -ikn x dx
P one period

If f(x) is real, then c-n = cn* .
 This can be proved by multiplying both sides of (#)
by e -ikn x , integrating over a period, and using the
following orthogonality relation:
1
ò
P one period
e i (kn -km )x dx = dmn



Fourier Transforms
 Consider the complex forms of Fourier series, which
can be written as follows:




Maths Revision Notes © Daniel Guetta, 2007
$2.99
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
tandhiwahyono
2.0
(1)

Maak kennis met de verkoper

Seller avatar
tandhiwahyono University of Indonesia
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
8
Lid sinds
3 jaar
Aantal volgers
8
Documenten
861
Laatst verkocht
1 jaar geleden
iKnow

The iKnow store provides course materials, study guides, study notes, lecture notes, textbook summaries and exam questions with answers, for levels from high school students to universities and professionals. Everything with the best quality and world class.

2.0

1 beoordelingen

5
0
4
0
3
0
2
1
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen