100% Zufriedenheitsgarantie Sofort verfügbar nach Zahlung Sowohl online als auch als PDF Du bist an nichts gebunden 4.2 TrustPilot
logo-home
Zusammenfassung

Summary Stochastic Processes II - Lecture Notes

Bewertung
-
Verkauft
-
seiten
28
Hochgeladen auf
06-05-2023
geschrieben in
2010/2011

Columbia Business School - First Year of the Doctoral Program in Decisions, Risk and Operations • Stochastic processes o Notes from Prof Assaf Zeevi's "Foundations of Stochastic Modelling". o Notes from Prof David Yao's "Stochastic Processes II".

Mehr anzeigen Weniger lesen
Hochschule
Kurs










Ups! Dein Dokument kann gerade nicht geladen werden. Versuch es erneut oder kontaktiere den Support.

Schule, Studium & Fach

Kurs

Dokument Information

Hochgeladen auf
6. mai 2023
Anzahl der Seiten
28
geschrieben in
2010/2011
Typ
Zusammenfassung

Themen

Inhaltsvorschau

Stochastic Processes II Page 1



STOCHASTIC PROCESSES II

PART I – MARTINGALES


Conditional expectations
 Measure theory
o In a probability space (W,  , ) , a sigma field  is a collection of events, each of
which as a subset of W . It satisfies (i) Æ Î  (ii) A Î   Ac Î  (iii)
Ai Î   Èi¥=1 Ai Î  . Notes:
 (i) and (ii)  W Î 

( )
c
¥ ¥
  A =
i =1 i
Ac , so also closed under infinite (and finite) intersection.
i =1 i


o A random variable maps X (w) : W   . When we say X is measurable with
respect to  and write X Î  , we mean {w : X (w) £ x } Î  "x .

 Conditional expectations
o (X | Y ) is a random variable. (X | Y )(w) =  (X | Y = Y (w)) . In other words,

the fact Y = Y (w) “reveals” a “region” of W in which we are located. We then
find the expected value of X given we are in that “region”.
 In terms of the definition below, we can write (X | Y ) = (X | s(Y )) ,
where s(Y ) is the sigma-field generated by Y – in other words,

s(Y ) = {{w : Y (w) £ x } : x Î } – every event can would be revealed by

Y.
o W = (X | ) is a random variable. (X | )(w) is a bit harder to understand –
effectively, it takes the expectation of X over the smallest  that contains w . In
other words, let A be the smallest element of  that contains w – then we
restrict ourselves to some region of W and find the expectation over that region;
(X |  )(w) = (X A ) . Formal properties:




Daniel Guetta

,Stochastic Processes II Page 2


 W Î  : information as to where we are in W only ever “reaches” us via
knowledge of which part of  we’re in, so this is obvious.
  (W A ) =  (X A ) for all A Î  : we are now restricting ourselves to a

region of W that is  -measurable. Provided A is the smallest element for
which w Î A , W (w) = (X A ) , and the result follows trivially. (If it is
not the smallest element, the result requires additional thought).
o Some properties
i.  éêëX |  ùúû if X Î 

ii.  éê  éêëX |  ùúû ùú = (X )
ë û
iii.  (XZ |  ) = Z  (X |  ) if Z Î 

iv. Tower:  éê  (X |  ) |  ùú =  (X |  ) if  Í  : in this case,  is “more
ë û
descriptive” than  , so the result makes sense.

( ( ) )
Proof: Use    (X |  ) |  A =   (X |  ) A ( ) for A Î  . Then use

the fact that A Î  to show this is equal to  (X A ) . 

v. Linearity

(
vi. Jensen’s: for convex f,  éêë f (X ) |  ùûú ³ f  éêëX |  ùúû )
o Notes
  éêëX ùúû =  éêëX | {Æ, W}ùúû (the RHS is a constant, because whatever w we

choose, the only element of {Æ, W} that contains it will be W ). Thus, (ii)
is a special case of (iv).
 Integrability of X implies integrability of  éêëX |  ùûú :
(vi) (ii)
 
é
ë
ù
û ë (
 ê (X |  ) ú £  éê  X |  )ù =  X
ûú ( )
o Example: Let W be countable. Let  = {1 , 2 , } be a partition of W , and 
å w Î i X ( w )( w )
be the set of all subsets of  . Then (X |  ) takes value ( i )
with

probability (i ) .




Daniel Guetta

, Stochastic Processes II Page 3


Proof: Clearly, the RV is  measurable, because each value it can take is

defined by a i . Also,  éêë (X | )A ùûú is the expected value over those i Í A .

Clearly, =  éëêX A ùûú . 



Martingales
 Definition: {Xn } is a sub-martingale with respect to {n } (where n Î n+1 ) if
i. X n Î n
ii. (X n ) < ¥ [it is often convenient to work with the stronger condition

 Xn < ¥ ].

iii.  éëêXn +1 | n ùûú ³ Xn [< gives a super-martingale, = gives a martingale]. Implies the

weaker property  éêëXn +1 ùûú ³  éëêXn ùûú

 Remarks:
o A convex function of a martingale is a submartingale.
o An increasing convex function of a submartingale is a submartingale.
Proof: (i) and (ii) are simple.  éêë f (Xn +1 ) | n ùúû ³ f ( [Xn +1 | n ]) ³ f (Xn ) . 

å
n
 Example: Let S n = i =1
X i , where the Xi are IID with (Xi ) = 0,  Xi < ¥
o Sn is a martingale [  Sn £ n  X1 ] (the mean martingale).

o If ar(X i ) = s 2 < ¥ , X n2 - s 2n is a martingale (the variance martingale). 
qX1 qSn
 Example (the exponential martingale): Let j(q) = (e ) . Mn = e / jn (q) is a

å
n
martingale. For example, if S n = i =1
Xi is an asymmetric random walk with

( )
Sn
1-p
p = (X i = 1) = 1 - (X i = -1) , then M n = p
is an exponential martingale, with
1-p
eq = p
and j(q) = 1 . 
 Example: Suppose an urn starts with one black and one white ball. We pull out balls
from the urn, and return them to the urn with another, new ball of the same color. Yn,
the proportion of white balls after n draws, is a martingale (mean ½). 
 Example: Let {Xn } be a Markov Chain with transition matrix P(x, y) and let h(x) be a
bounded function with h(x ) = å y p(x, y )h(y ) . {h(Xn )} is then a martingale. 




Daniel Guetta
$2.99
Vollständigen Zugriff auf das Dokument erhalten:

100% Zufriedenheitsgarantie
Sofort verfügbar nach Zahlung
Sowohl online als auch als PDF
Du bist an nichts gebunden

Lerne den Verkäufer kennen
Seller avatar
tandhiwahyono
2.0
(1)

Lerne den Verkäufer kennen

Seller avatar
tandhiwahyono University of Indonesia
Folgen Sie müssen sich einloggen, um Studenten oder Kursen zu folgen.
Verkauft
8
Mitglied seit
3 Jahren
Anzahl der Follower
8
Dokumente
861
Zuletzt verkauft
1 Jahren vor
iKnow

The iKnow store provides course materials, study guides, study notes, lecture notes, textbook summaries and exam questions with answers, for levels from high school students to universities and professionals. Everything with the best quality and world class.

2.0

1 rezensionen

5
0
4
0
3
0
2
1
1
0

Kürzlich von dir angesehen.

Warum sich Studierende für Stuvia entscheiden

on Mitstudent*innen erstellt, durch Bewertungen verifiziert

Geschrieben von Student*innen, die bestanden haben und bewertet von anderen, die diese Studiendokumente verwendet haben.

Nicht zufrieden? Wähle ein anderes Dokument

Kein Problem! Du kannst direkt ein anderes Dokument wählen, das besser zu dem passt, was du suchst.

Bezahle wie du möchtest, fange sofort an zu lernen

Kein Abonnement, keine Verpflichtungen. Bezahle wie gewohnt per Kreditkarte oder Sofort und lade dein PDF-Dokument sofort herunter.

Student with book image

“Gekauft, heruntergeladen und bestanden. So einfach kann es sein.”

Alisha Student

Häufig gestellte Fragen