100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Complete Summary Machine Learning (X_400154)

Beoordeling
-
Verkocht
17
Pagina's
104
Geüpload op
26-03-2023
Geschreven in
2022/2023

This summary contains all material discussed in the lectures (1-13) of Machine Learning taught at the Vrije Universiteit Amsterdam to third year Business Analytics, Information Science, Computer Science and Artificial Intelligence bachelor students. It is quite extensive, contains a lot more than just theoretical formulas (I think it is hard to memorise them without knowing some background) so everything I wrote is explained with a sketch, example or some extra information that all helped me to understand all theory, rather than memorising some formulas. I passed the exam with 39/40 points so it definitely helped me to apply all knowledge, I hope it does the same for you!

Meer zien Lees minder
Instelling
Vak











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
26 maart 2023
Aantal pagina's
104
Geschreven in
2022/2023
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

LECTURE 71 WHAT IS MACHINELEARNING


We provide a large number of examples from the sort of thing we
want the computer to learn Instead of providing the computer a set
of instructions step bystep the computer figurs out its own program



examples sortinghandwritten adresses computer chess self driving cars


A ML problem is suitable when
we can't solve it explicitly

approximate solutions are fine
limited reliability predictability interpretability is fine

plenty ofexamples to learnfrom


ML provides systems the ability to automatically learn and improve
from experience without beingexplicitlyprogrammed

Most of this Ml course is about offline learning The main idea is
that we seperate learningpredicting and acting
We start with a dataset of examples instances Then feed these
instances into a learningalgorithm that produces a model
Test the model to see if it works by checking its predictions


We want Solutions that are applicable across domains not one
solution for chess one for cars etc Hence we abstract the
learning task to an abstract task e g Classification regression
and then develop an algorithm for these abstract tasks

,Two types of abstract tasks
Supervised abstract tasks
provide examples of input and output
learn to predict the output from an unseen input
Classification
regression


unsupervised abstract tasks
provide input only
find any pattern that explains something about the data

clustering
density estimation
generative modeling

Basic recipe for offline ML
1 Abstract the problem to a Standard task
2 Choose instances and their features
3 Choose model class
4 Search for a good model

,LECTURE 12 CLASSIFICATION


Classification is the task of assigning a class to an example
That is one of a finite number of categories


The basic framework of classification has data that
consists of examples instances of things we are trying to
learn something about Per instance we measure some
feature numeric categorie Finally we have the target value
the thing we are
trying to learn In classification this is

always a Class of possible values

3 examples of classification algorithms
linear classifier
With 2 features above the line is
ei predicted and below the line



Decision tree classifier

42 yo Per target value 2 classes are possible
la Gb If the first eg is yes and the
Yesh yo gesp y no
a b a b second not the class b is assigned


K nearest neighbours KNN
The algorithm searches for the k in the example

_jij KU nearest neighbours and assign the class
that is most frequent in that set

, LECTURE 1.3 OTHER ABSTRACT TASKS REGRESSION
CLUSTERING DENSITY ESTIMATION


Regression supervised
Works exactly the same as Classification except we're
predicting a number instead of a Class
The features of a particular instance i are denoted by the
vector xi The corresponding true label given the data is ti
The models prediction is given by f xi
Goal is to get f xi as close as possible to ti
To determine how good a model is
we use a lossfunction
ii Igression Mean squared error Insel loss
loss If IF

We can also use the decision tree principle to perform
a regression tree Just like classification
regression giving us
we can even apply KNN to regression as well


Clustering unsupervised
Goal here is to split the instances into a number of
clusters This number is usually given by the user in advance
One example of clustering is k means start
bij choosing
k random points in the feature space the means Assign
each point to the closest mean giving k clusters Next re compute
the means for each cluster and re assign Points to its closest
mean Repeat this process until the means stop moving

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
jorinemol Vrije Universiteit Amsterdam
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
131
Lid sinds
7 jaar
Aantal volgers
76
Documenten
15
Laatst verkocht
6 maanden geleden

4.3

16 beoordelingen

5
10
4
4
3
0
2
0
1
2

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen