100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Class notes

Variable y Función Compleja

Rating
-
Sold
-
Pages
5
Uploaded on
17-02-2023
Written in
2022/2023

Incluye operaciones elementales de la variable compleja así como la introducción de las funciones complejas.

Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
February 17, 2023
Number of pages
5
Written in
2022/2023
Type
Class notes
Professor(s)
María higuera
Contains
All classes

Subjects

Content preview

VARIABLE COMPLETA

fk = k
utorno
=> = Bola abierta = B([0.3)=(ECK/120-21 9}
f(z) f(x = + iy) (
=
u+
- iv u(x,y) + iv(x,y)
-




Argumento principal: Oc(M. i]


Ejemplo:


8: D: IRF 8:1 i
DIE 1E1 + Arg(z)
Arglz)

f(z) (t) =




"I
·

·I -
L
-

B ⑱ a




"I'll

condiciones para que una funcion sea funcion:


-




-
Todos los elementos del



Un elemento del conjunto
conjunto departida tienen imagen.


departida solo puede tener una imagen.
B
Hay algunas funciones son multievaluadas, decir funciones los cuales los elementos del dominio le corresponden varias
que es en a




imagenes. - P.e.f(x) x =




En
f(x) =
xhaydosramas, Hay que elegir una rama con la cual trabajar.



LIMITE DE FUNCIONES COMPLEJAS




limf(x-ec.53:5850/1EEK6:18171.1K9 Paracalcular el limite de
estedefinida
una funcion no have falta
que la funcion que
en el punts.

LIMITEENO Eiemplo:
line f(b/z) lim 1. E
1 E
-




E + O E +1




LIMITE INFINITO lim 1-(1 -
(1) 1 lim
5-(+ix) 1
-
j =


x 01 (x + iy)
=

- x1
= 1-(1-iy)
x+1 *
8

lime
+ 8
(f(2) = 0

E


CONTINUIDAD

Yes continua en to si,x9+058%0/12.Cokc8 =
(812) f(colk


limf(x) =
f(20) Esta no
hay que usaat

, EjemplO:


lim
E s
1s.lime 4RzeidreiG"

+a
=


lim
(2 -3i)(2 + 3i)
lim =
6i
=




E + 5i = 3i Ei3i E -
3




DERIVADA DE
f1z)

PREVI8 i




8: IRP: 1R9


of -lim flx+af(x). Derivada can respects a or
unreco




I
La derivabilidad no implica continuidad.


La diferenciabilidad si implica continuidad



dEl)
lf(x h1 f(x)
↓i.
m
+ - -
0
=




1 ill



La funciones diferenciable mando existen (as derivadas parciales, son continuas.



seaf: A -PI ECA



f1)
limf(z
(z)
f'(z)
+
-


=




NZ




=emplo:


f(z) 2 =




(2 -z-
+521
Uz
in
lim
o NZ
Xz + 8


+x
0im-itt
=




I gota
Nz 0x iUY No derivable ningan punto.
dimso
= + es en


inme UN 1
loss =


XX + y WN
Nz Ux-iUY
=
$7.24
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
AeroLibrary

Get to know the seller

Seller avatar
AeroLibrary Universidad Politécnica de Madrid
Follow You need to be logged in order to follow users or courses
Sold
0
Member since
2 year
Number of followers
0
Documents
0
Last sold
-

Estudiante de segundo curso de Ingeniería Aeroespacial en la Universidad Politécnica de Madrid. Todas las asignaturas aprobadas hasta la fecha con una media de 8.

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions