Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Resume

Summary Marketing Research Methods

Vendu
8
Pages
73
Publié le
13-02-2023
Écrit en
2021/2022

Full Summary Marketing Research Methods. Others that have used this document have all passed the course easily. The document includes the lecturers information on all the mandatory topics.

Établissement
Cours











Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Cours
Cours

Infos sur le Document

Publié le
13 février 2023
Nombre de pages
73
Écrit en
2021/2022
Type
Resume

Sujets

Aperçu du contenu

Contents
1. Factor Analysis...................................................................................................................................1
2. Reliability analysis..............................................................................................................................6
3.Cluster Analysis...................................................................................................................................7
4. What type of model to use:.............................................................................................................13
5. ANOVA.............................................................................................................................................14
6. ANCOVA...........................................................................................................................................22
7. Relationships among methods.........................................................................................................27
8. Bivariate regression.........................................................................................................................27
9. Multiple regression..........................................................................................................................30
10. Bivariate  multiple regression........................................................................................................33
11. Multicollinearity.............................................................................................................................33
12. Assumptions of linear regression...................................................................................................33
13. Interpretations: Transformations..................................................................................................34
14. Nominal variable: dummy coding..................................................................................................34
15. ANOVA vs. Regression...................................................................................................................35
16. T-test vs. AN( C)OVA vs. Regression...............................................................................................35
17. Moderation analysis......................................................................................................................35
18. Mediation Analysis.........................................................................................................................47
19. Binary Regression..........................................................................................................................52
20. Logit (logistic regression)...............................................................................................................55
21. Conjoint analysis............................................................................................................................62




1. Factor Analysis
Factor analysis is used to reduce a large quantity of data by finding common variance to:

,  Retrieve underlying dimensions in your dataset, or
 Test if the hypothesized dimensions also exist in your dataset

Data is:

 Interval or ratio variables
o Often ordinal, but assumed interval (Likert scale)

Outliers vs Odd values:

 Outliers = values that are possible on the scale BUT so far off from the rest that they have a
large impact on the variance and mean of the variables, and thus a large impact on the
parameters – results of the analyses
 Odd values = values that are NOT possible given the scale of the variable. Obviously this will
lead to erroneous results. Hence, these should be labeled as missings.



Factor analysis steps

1. Assumption check: KMO and Bartlett’s test of sphericity
2. Communalities
3. Check correlation matrix
4. FA output: eigenvalue, % of variance, cumulative % of variance
5. Scree Plot
6. Rotating the factor matrix: communalities check
7. subsequent use of factors



1. KMO and bartletts test of sphericity
 KMO >0.5
 Bartletts: <0.05
o -H0: variables are uncorrelated, i.e. the identity matrix
o -If we cannot reject H0, no correlations can be established
 Both determine the appropriateness of Factor Analysis as both base their measure on the
underlying correlations of the variable.



2. Communalities
 The amount of variance a variable shares with all the other variables being considered
o OR the proportion of variance IN A VARIABLE explained by the COMMON factors
 Important to mention that it is that this is a metric OF A VARIABLE and not of a factor. And
that it is the variance shared with the variables / explained by factors (plural, and not the
other way around)
 the communalities measure the percent of variance in a given variable explained by all the
extracted factors
o This is < 1, since we have fewer factors than variables

, o
o Treshold: >0.4
o  too low  eliminate that variable and rerun FA  Repeat until all are over 0.4




3. Correlation Matrix





 Factor 1+2+3 might be similar. Factor 4+5+6 might be similar
 Suppose we have X1, X2, X3, X4, X5, X6
 Note: SPSS invisibly standardizes X-variables (mu=0, sd=1)
 Reforms the variables. So that these variables are comparable to each other
 Any set of variables X1….X6 can be expressed as a linear combination of other variables,
called factors F1, F2, F3, F4, F5, F6 based on common variance in X1….X6
 You choose only the ‘strongest factors’
 Best number of factors unknown upfront
 E.g. 2 factors F1 & F2
 Lego blocks, tower of different color blocks  most blocks is best factor
 Will never be done perfectly, info gets lost
 E.g. F3, F4, F5, and F6 are not used



4. FA output: eigenvalue, % of variance, cumulative % of variance

, 
 Criteria for factor selection
 Only those for which eigenvalues > 1 (Total)
 Eigenvalue: How much variance a factor explains
 Sum of eigenvalues is number of variables in this case 11 (as each variable
has a variance of 1)
 Those factors that explain > 5% each (in % of variance)
 % of variance is eigenvalue divided by number of variables
 Total explained variance > 60% (in cumulative %)





5. Scree Plot





 Find the elbow  is where the size of the eigenvalue starts to be too low  dimension
where the scree starts is not the one you want to have anymore
 Based on this 4 dimensions, as it levels of at 5




6. Rotation
 Unrotated Factor Matrix: hard to interpret
 Rotation
o Prevents that all variables load on 1 factor
o Minimizes the number of variables which have high loadings on each given factor
o Does not change the variance explained = no change in communality
 Usually: rotate orthogonally (e.g. VARIMAX)
$7.84
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur
Seller avatar
leontakens13
5.0
(1)

Reviews from verified buyers

Affichage de tous les avis
9 mois de cela

5.0

1 revues

5
1
4
0
3
0
2
0
1
0
Avis fiables sur Stuvia

Tous les avis sont réalisés par de vrais utilisateurs de Stuvia après des achats vérifiés.

Faites connaissance avec le vendeur

Seller avatar
leontakens13 Universiteit Twente
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
9
Membre depuis
8 année
Nombre de followers
5
Documents
5
Dernière vente
9 mois de cela

5.0

1 revues

5
1
4
0
3
0
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions