100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary Linear Models in Statistics | All Theory from Slides

Rating
-
Sold
-
Pages
62
Uploaded on
08-02-2023
Written in
2022/2023

All theory from slides in the course Linear Models in Statistics, provided by dr. M. Kesina. Covers all topics discussed in this course.

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
February 8, 2023
Number of pages
62
Written in
2022/2023
Type
Summary

Subjects

Content preview

Linear Models in Statistics
Theory
EBB072A05
Semester I B


Wouter Voskuilen
S4916344
Slides by dr. M. Kesina




1

,Wouter Voskuilen Linear Models in Statistics


Contents
1 Chapter 1: Matrix Algebra 3
1.1 Vectors and Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Rank, Determinant, and Inverse . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Positive (semi) Definite Matrices . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Projection Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6 Partitioned Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.7 Differentiation Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Chapter 2: Random Vectors 17
2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Operations and Transformations . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Expected Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Variance-covariance matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Correlation matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6 General Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Chapter 3: Multivariate Normal and Related Distributions 23
3.1 Univariate Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Multivariate Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Related Distributions: χ2 , F , and t distribution . . . . . . . . . . . . . . . . . 25
3.4 Results on Quadratic Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5 Distribution Check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Chapter 4: Linear Model 28
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 OLS Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.1 Bivariate Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.2 Multivariate Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Goodness of Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4 Properties of the OLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.5 Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.6 Maximum Likelihood Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.7 Frisch-Waugh-Lovell Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.8 Wrong Specification of the Regressor Matrix . . . . . . . . . . . . . . . . . . . 56
4.9 Violation of the OLS Assumptions . . . . . . . . . . . . . . . . . . . . . . . . 60
4.9.1 Violation of Assumption A.2 . . . . . . . . . . . . . . . . . . . . . . . 60
4.9.2 Violation of Assumption A.4 . . . . . . . . . . . . . . . . . . . . . . . 60




2

,Wouter Voskuilen Linear Models in Statistics


1 Chapter 1: Matrix Algebra
1.1 Vectors and Matrices
Let  
a1
 a2 
a= . 
 
 .. 
an
a is called a vector (column vector).
The elements ai for i = 1, ..., n are called elements or components of a. n is the order of the
vector.

Let a and b be two vectors, which have the same order n.
Summation of two vectors:
     
a1 b1 a1 + b1
 a2   b2   a2 + b2 
a+b= . + . = . 
     
 ..   ..   .. 
an bn an + bn

Vector summation is:

− Commutative: a + b = b + a

− Associative: (a + b) + c = a + (b + c), where c is a vector of the same order as a and
b.

Multiplication of a vector with a scalar λ
 
a1
 a2 
λa = λ  . 
 
 .. 
an

Inner or scalar product of two vectors a and b of the same order n
n
X
⟨a, b⟩ = a′ b = ai bi .
i=1

The length (or norm) of a vector

∥a∥ = ⟨a, a⟩1/2 = a′ a.


3

, Wouter Voskuilen Linear Models in Statistics


Any nonzero vector can be normalized by
1
ao = a.
∥a∥
A normalized vector has norm 1.

Collinearity of two vectors a and b
a = λb
for some scalar λ.

Two vectors a and b with ⟨a, b⟩ = 0 are called orthogonal.
If ⟨a, b⟩ = 0 and ∥a∥ = ∥b∥ = 1, then a and b are called orthonormal.

Outer product of two vectors a and b of the same order
 
a1 b1 · · · a1 bn
ab′ =  ... .. .. 

. . 
an b1 · · · an bn

Unit vectors or Elementary vectors ej :
ej consists of zeros and a single one on the jth position.
Unit vectors are orthonormal.

Vector of ones ιn :
ιn consists of ones only. The index indicates the size.
ιn is also called the sum vector
n
X n
X
ι′n a = ιi a i = ai .
i=1 i=1


Let  
a11 · · · a1m
 .. .. .. 
A= . . . 
a1n · · · anm
The matrix A is of order/size/dimension n × m.
We also write A = {aij } and Aij = aij .

Let A be a n × m matrix.
− A is square if n = m.

− A is symmetric if n = m and aij = aji , i, j = 1, ..., n.

4
$16.34
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
woutervoskuilen

Get to know the seller

Seller avatar
woutervoskuilen Rijksuniversiteit Groningen
Follow You need to be logged in order to follow users or courses
Sold
2
Member since
2 year
Number of followers
2
Documents
8
Last sold
2 year ago

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions