100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Samenvatting Statistiek 1: Een Introductie (ESSB-E1030)

Rating
-
Sold
-
Pages
8
Uploaded on
23-01-2023
Written in
2022/2023

Samenvatting Statistiek 1: Een Introductie (ESSB-E1030)

Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
January 23, 2023
Number of pages
8
Written in
2022/2023
Type
Summary

Subjects

Content preview

Bijeenkomst 8 statistiek
Kwantitatieve variabelen

Inferentie voor het populatiegemiddelde
Inferentie = het generaliseren van waarnemingen en eigenschappen uit een steekproef naar de
gehele populatie. Gebaseerd op het idee: wat gebeurt er als we iets heel vaak herhalen
(kansberekening)

𝑠
Standaard error van de sample mean 𝑥̅ = 𝑺𝑬𝒙̅ =
√n

Betrouwbaarheidsinterval en significantietesten voor μ van een Normale populatie zijn
gebaseerd op de sample mean 𝑥̅. De sampling distribution van 𝑥̅ hangt af van σ.
Als σ onbekend is, dan schatten we hem met behulp van de sample standaarddeviatie s
-> dat zorgt voor een standaard error.
Dus: wanneer een standaarddeviatie van een statistiek geschat wordt met de data, is het resultaat
𝑠
de standaard error van de statistiek. De standaard error van de sample mean is: 𝑆𝐸𝑥̅= √n


One-sample z-statistiek versus one-sample t statistiek
x̅−μ
Normaal gesproken is de gestandaliseerde sample mean (z-statistiek) = 𝑧 = σ
√n
Dit is de basis voor gevolgtrekking over μ, als σ bekend is. Deze heeft een normaal verdeling

𝑠 σ
Als je echter de σ niet weet, moet je de s gebruiken. Als we √n plaatsen in plaats van √n heeft het
geen normale verdeling meer, maar een t verdeling (one-sample t statistic).
x̅−μ
De one-sample t statistiek is dan 𝑡 = 𝑠 en heeft de t distributie met n-1 degrees of freedom (=df)
√n

➢ Een t-score zegt (net als een z-score): hoe ver is een teststatistiek verwijderd van een gemiddelde
uitgedrukt in standaarddeviaties
➢ Opzoeken in table D -> DF= n-1 ; bovenin staat hoeveel % je zoekt (mdaar dat dan natuurlijk wel
delen



Verdeling van een t-distributie

➢ t(k) staat voor de t distributie met k degrees of freedom.
Die zijn afhankelijk van de sample size, dus zijn voor elke sample size anders. Daarom heeft elke
sample size een andere verdeling t.
➢ Als k groter wordt, wordt de t(k) curve dichterbij de N(0,1) curve.
Als de sample size groter wordt, komt s dichter bij σ te liggen.
➢ Die verdeling heeft (bijna) dezelfde bell-shape als een Normaal verdeling.
De t-verdeling heeft meer kans in de staarten en iets minder in de center. Dat komt
door de verhoogde variabiliteit door het schatten van s voor σ.

, 𝑠
Margin of error voor t-statistiek= 𝒕* = 𝑺𝑬𝒙̅ , oftwel = √n.
(=margin of error voor de populatie mean als we data gebruiken om σ te schatten)

Als je een SRS neemt van grootte n van een populatie met een onbekende mean μ. Een level C
𝑠
confidence interval voor μ is dan 𝑥̅ ± 𝑡 ∗ √nmet daarin t* als waarde voor de t(n-1) density curve met
gebied C tussen -t* en t*.
𝑠
De margin of error hierbij is 𝑡 ∗ . Het confidence level is exact C wanneer de populatieverdeling
√n
normaal is en ook ongeveer correct is voor grote n in andere gevallen



Significante toetsing bij een t-test
Een SRS van grootte n is getrokken uit een populatie met een onbekende mean μ. Om de hypothese
H0: μ=μ0 te testen, gebaseerd op die SRS met grootte n, gebruiken we de
x̅−μo
one-sample t statistic: 𝑡 = 𝑠
√n


Als random variabele T een t(n-1) verdeling heeft, dan is de P-waarde voor de test van H0 tegen:

HA = μ > μ0 is P(T>t)




HA = μ < μ0 is P(T<t)




HA = μ ≠ μ0 is P(Z ≠ t)



Die P-waarden zijn exact als de verdeling van de populatie normaal is. In andere gevallen zijn ze
correct als de n groot is.

Matched pairs design
➢ Meestal gebruiken we comparative inference in plaats van inference, omdat je dan minder te maken hebt
met confounding. In een matched pairs studie zijn subjects in paren gekoppeld. Hun uitkomsten worden
vergeleken binnen elk gekoppeld paar.
➢ Het idee er achter is dat gekoppelde paren beter vergelijkbaar zijn dan ungekoppelde subjecten,
dus de uitkomst is meer effecient(kleinere σ).
Als randomisatie onmogelijk is, gebruiken we ook matched pairs. Het wordt vooral gebruikt als
observaties van hetzelfde subjecten onder twee verschillende condities worden gedaan.
➢ In de meeste omstandigheden kunnen we niet helemaal zeker zijn over de richting van het
verschil. De veiligste strategie is om een twee-zijdig alternatief te gebruiken. (Ha≠…)

Hoofdpunten om matched pairs te onthouden:

1. Een matched pairs analyse wordt gebruikt als subjects gekoppeld zijn in paren of als er twee
metingen of observaties van elk individu worden gedaan en we het verschil willen
onderzoeken
$4.79
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached


Document also available in package deal

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
joycevries Erasmus Universiteit Rotterdam
Follow You need to be logged in order to follow users or courses
Sold
610
Member since
2 year
Number of followers
132
Documents
76
Last sold
1 day ago

Mocht je vragen, opmerkingen of tips hebben over mijn samenvattingen kan je me gerust een mailtje sturen ()!

4.3

85 reviews

5
43
4
28
3
11
2
1
1
2

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can immediately select a different document that better matches what you need.

Pay how you prefer, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card or EFT and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions