100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Samenvatting Wiskunde Voor Ontwerpers UA - 1ste bachelor interieurarchitectuur

Rating
-
Sold
6
Pages
16
Uploaded on
22-01-2023
Written in
2022/2023

In deze samenvatting vind je alles wat je moet kennen voor het examen wiskunde voor ontwerpers. Het vak wordt gegeven door Lieven Le Bruyn. Dit komt overeen met wat de architecten van de UA moeten kennen in het eerste semester.

Institution
Course










Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
January 22, 2023
Number of pages
16
Written in
2022/2023
Type
Summary

Subjects

Content preview

WISKUNDE VOOR ONTWERPERS

LES 1: VORM EN CHARACTERISTIEK

Oppervlak:
- een oppervlak is een veelvlak met alle zijvlakken driehoeken (mesh/raster)

Gewone zijde:
- een gewone zijde grenst aan juist twee driehoeken

Rand-zijde:
- een rand-zijde grenst aan slechts één driehoek

Triangulatie van een oppervlak:
- Neem je denkbeeldig oppervlak en leg er een driehoekige mesh over. Dat is, we overdekken het
oppervlak met flexibele driehoeken die ofwel disjunct zijn, ofwel een hoekpunt gemeen hebben,
ofwel een volledige zijde gemeen hebben. Dit noemen we een triangulatie van het oppervlak. We
noemen een zijde van een driehoek uit de triangulatie.

STELLING 1:
- Elk oppervlak is een opgevouwen veelhoek. Dat is, elk oppervlak kan verkregen worden uit een
veelhoek, waarvan de zijden ofwel rand-zijden van de triangulatie zijn, en alle overige zijden
twee aan twee geplakt moeten worden.




De kegel, de cilinder, de möbius-band, de torus, de sfeer, de cross cap en de fles van klein

Euler karakteristiek van een oppervlak:
- x=V-E+F
- V = aantal hoekpunten van het raster
- E = aantal zijden van het raster
- F = aantal driehoeken in het raster

STELLING 2:
- De Euler characteristic is een eigenschap van het oppervlak en hangt niet af van de gekozen
triangulatie.

De sfeer:
- de sfeer is de grens van een bol




1

,STELLING 3:
- Als het oppervlak verkregen wordt uit een r + 2s-hoek met r zijden die corresponderen met de
rand-zijden van de triangulatie en waarvan de 2s zijden paarsgewijs geplakt worden, dan is de
Euler characteristiek gelijk aan v − (r + s) + 1 waarbij v het aantal verschillende punten op het
oppervlak zijn die corresponderen met hoekpunten van de veelhoek.

n-hoek:
- een n-hoek (veelhoek) → n - 2 driehoeken
● 5 hoek kan je opdelen in 3 driehoeken
● 6 hoek kan je opdelen in 4 driehoeken
● 8 hoek kan je opdelen in 6 driehoeken
- V = + 0 (omdat je geen nieuwe hoeken hebt toegevoegd
- E = + (n - 3) omdat je 3 nieuwe zijden hebt toegevoegd
- F = + (n - 3) omdat je 3 nieuwe driehoeken hebt toegevoegd
- Dit is altijd 0

Elk oppervlak dat je je kan voorstellen is een veelhoek waarvan de rand zijden twee aan twee gelijk zijn of
als het een randzijde van je oppervlak is.

Een gesloten oppervlak:
- een gesloten oppervlak is een oppervlak zonder rand
- Een gesloten oppervlak is een opgevouwen veelhoek waarvan alle zijden twee aan twee geplakt
worden. De enige construeerbare gesloten oppervlakken zijn de sfeer, de torus of een
aaneenschakeling van g tori.

Het genus g (aantal gaten in oppervlak):
- Het genus g van en construeerbaar gesloten oppervlak is het aantal gaten in het oppervlak.
- 2g=2-x

Veelvlak:
- Een veelvlak is een ruimtelijke figuur verkregen door veelhoeken langs gemeenschappelijke
zijden aan elkaar te plakken. Elk hoekpunt is volledig omringd door zijvlakken en elke ribbe is de
grens van juist twee zijvlakken.

Convex veelvlak:
- Een convex veelvlak is een veelvlak zodat in elk hoekpunt de som van de binnenhoeken van de
aangrenzende zijvlakken minder is dan 360°.

Convex en concaaf:
- Convex: som van de aangrenzende binnenhoeken van een punt is minder dan 360°.
- Concaaf: som van de aangrenzende binnenhoeken van een punt is meer dan 360°. (sommige
hoekpunten)

Stelling van Euler voor veelvlakken:
- V-E+F=2
- Als een convex veelvlak V hoekpunten, E ribben en F zijvlakken heeft, dan geldt deze formule.
- Elk convex veelvlak kunnen we opblazen tot het een sfeer wordt. Omdat de Euler characteristiek
van een sfeer gelijk is aan 2 zal voor elk convex veelvlak dus gelden dat V−E+F=2 met V het aantal
hoekpunten, E het aantal zijden en F het aantal zijvlakken van het convex veelvlak.




2

, STELLING 4:
- Er zijn juist vijf Platonische veelvlakken: de tetraëder, de kubus, de octaëder, de dodecaëder en
de icosaëder.

Platonische veelvlakken:
- een convex veelvlaken noemen we platonisch indien elk zijvlak een regelmatige n-hoek is, en in
elk hoekpunt er juist r zijvlakken toekomen.
- Er zijn juist 5 platonische veelvlakken: de tetraheder (n = 3), de kubus (n =4), de octaheder (n
=3), de dodecaheder (n = 5) en de icosaheder (n = 3).
● n = aantal hoekpunten van een veelhoek die grenzen aan het hoekpunt.
● r = aantal keer deze veelhoek voorkomt in het genomen hoekpunt.
○ tetraëder: n = 3, r = 3
○ Kubus: n = 4, r = 3
○ Octaëder: n = 3, r = 4
○ Dodecaëder: n = 5, r = 3
○ Icosaëder: n = 3, r = 5




STELLING 5:
- Buiten de vijf Platonische veelvlakken, de prisma’s en antiprisma’s zijn er nog juist 13 andere
Archimedische veelvlakken.

Archimedische veelvlakken:
- Een convex veelvlak noemen we archimedisch als elk zijvlak een
regelmatige veelhoek is en er in elk hoekpunt dezelfde types van
veelvlakken voorkomen.
● De vijf platonische veelvlakken
● De prisma’s en anti-prisma’s
● Nog juist 13 andere gevallen
- Alle platonische veelvlakken zijn archimedische veelvlakken, maar niet alle archimedische
veelvlakken zijn platonische veelvlakken.
LES 2: SYMMETRIE EN ORBIFOLDS

Symmetrie:
- Een symmetrie is een operatie die je op een object doet zodanig dat het object juist hetzelfde
eruit ziet.

Rotatie / draaiing:
- Draaien rond het centrum met een vaste hoek. Hoek is de rotatiehoek.

Spiegeling:
- Spiegelt ten opzichte van een as.

Translatie / verschuiving:
- Verplaatsing over een vaste afstand en richting.


3

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
emmaderidder5 Universiteit Antwerpen
Follow You need to be logged in order to follow users or courses
Sold
26
Member since
2 year
Number of followers
16
Documents
7
Last sold
1 year ago

3.5

2 reviews

5
0
4
1
3
1
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions