100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Samenvatting stellingen & bewijzen Wiskunde 2 (HI(B))

Puntuación
4.3
(3)
Vendido
16
Páginas
14
Subido en
17-01-2023
Escrito en
2022/2023

Dit is een samenvatting van alle te kennen stellingen en bewijzen van het vak wiskunde met bedrijfseconomische en technologische toepassingen 2 in het academiejaar gegeven door Tom Mestdag.

Institución
Grado









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
17 de enero de 2023
Número de páginas
14
Escrito en
2022/2023
Tipo
Resumen

Temas

Vista previa del contenido

Wiskunde 2: bewijzen en
stellingen
2.3 Matrixbewerkingen: Elementaire matrices
Stelling
Als j =/ k dan is Uij * Ukl = 0m
Als j = k dan is Uij * Ukl = Uil

Bewijs
De matrix 0m in de opgave van de stelling staat voor de nulmatrix in orde m. Beide beweringen volgen uit
Uij*Ukl = (⃗ ej ¿( ⃗
ei ∙ ⃗ ek ∙ ⃗
el )= ⃗ ej ¿ ¿ T ∙ ⃗
ei ∙( ⃗ ⃗T ¿
T T
ek )∙ el
In het geval dat j =/ k is de (1,1)-matrix ⃗ ej ∙ ⃗
T
ek net 0, dus is Uif * Ukl de nulmatrix. In het geval waarbij j=k is ¿ ¿= 1 en dus
Uij = Ujl = ⃗ ⃗ T
ei ∙ el = Uil


2.4 Matrixbewerkingen: De inverse van een vierkante
matrix
Stelling
Als A inverteerbaar is, is inverse matrix B uniek.

Stelling
( A ∙ B)−1=B−1 ∙ A−1
−1
( A¿¿ t ) =¿ ¿

Stelling
Er geldt voor i =/ j:
1) Eij(a) ∙ Eij(-a) = I
2) Eij ∙ Eij = I
3) Ei(c) ∙ Ei(c−1 ¿ = I

Bewijs
We tonen enkel de 1ste en de 3de uitspraak aan. De 2de is analoog
Er geldt: (I + aUij) (I - aUij) = I – aUij + aUij – a²Uij Uij
=I
Tevens is: (I+ (c-1) Uii) (I + (1 / c – 1) Uii) = I + (1/c - 1) Uii + (c-1) Uii + (c-1) (1/c -1) Uii Uii
= I + (1/c -1 + c – 1 + 1 – c – 1/c + 1)Uii
=I

Stelling
Voor een vierkante matrix (n x n) A zijn volgende uitspraken equivalent:
1) Matrix is regulier: rank(A) = n
2) Ref(A) = In
3) A is een product van elementaire matrices
4) A is inverteerbaar
x =⃗b van n vergelijkingen in n onbekenden heeft een unieke oplossing ⃗x = A−1 ∙ ⃗b
5) Het stelsel A ∙ ⃗

Bewijs
(1)  (2): Als rank(A) = n, dan zijn er n leidende 1-en. N is in een vierkante matrix ook het aantal rijen, dus ref(A) = In

, (2)  (3): ref(A) = In dus er bestaat een product van elementaire matrices C = Ek ∙ … ∙ E1 zodat C ∙A = In. Elk van die
elementaire matrices zijn inverteerbaar met elementaire inversie. Als gevolg is C ook inverteerbaar met
−1 −1 −1
C =E1 ∙ … ∙ E k . Indien C ∙ A = In vinden we dat A = C−1, wat het product is van elementaire matrices
(3)  (4): alle elementaire matrices zijn inverteerbaar
x =⃗b dat A ∙ A ∙ ⃗x = A ∙ ⃗b  ⃗x = A ∙ ⃗b
−1 −1 −1
(4)  (5): Wanneer A inverteerbaar is, dan volgt uit A ∙ ⃗
(5)  (1): Unieke oplossing voor rank(A) moet n zijn


4.1 Vectoren en deelruimten: R
n
als verzameling
van vectoren
Stelling
v1,…,⃗
Als vectoren {⃗ vk } lineair onafhankelijk zijn in Rn , dan is k =< n
Bewijs

[]
λ1
Noem ⃗λ= … . Lineaire onafhankelijkheid kunnen we ook uitdrukken als de eigenschap die zegt dat de
λk
matrixvermenigvuldiging van V ∙ ⃗λ = 0 ⃗ een unieke oplossing heeft, namelijk ⃗λ=⃗0. Deze matrixvermenigvuldiging kunnen
we is een stelsel van n vergelijkingen in k onbekenden. Hieruit volgt dat rank(V) net gelijk is aan het aantal onbekenden, in
dit geval dus k. Bij definitie is de rang van een n x k-matrix =< min(k, n). We kunnen dus concluderen dat k =< n.

Stelling
Elke basis van Rn telt n vectoren.



Stelling
Beschouw een stel vectoren {⃗
v1,…,⃗ vn} lineair onafhankelijk zijn in Rn , en de bijhorende matrix V ten opzichte van de
standaardbasis. De volgende uitspraken zijn equivalent:
1) Het stel {⃗
v1,…,⃗ vn} is lineair onafhankelijk
2) V is een inverteerbare n x n-matrix
3) Het stel vectoren {⃗
v1,…,⃗ vn} is een basis voor Rn
Bewijs
(1)  (2): rank(V) = k = n. Hieruit volgt dat V inverteerbaar is.
(2)  (3): Als V een inverteerbare n x n-matrix is, dan volgt hieruit dat elke matrixvergelijking V ∙ ⃗ x = ⃗b met ⃗x en b⃗ n-
dimensionale kolomvectoren een unieke oplossing heeft, namelijk ⃗ x =V ∙ b. Als we het geval b⃗ = 0 nemen, betekent
−1 ⃗

deze eigenschap dat alle vectoren {⃗ v1,…,⃗ vn} lineair onafhankelijk zijn. Anderzijds voor een willekeurige b⃗ kunnen de
(uniek bestaande) componenten xi van ⃗ x gebruikt worden om b⃗ te beschrijven als een lineaire combinatie x1⃗ v 1 + … + xn

vn. Hiermee hebben we voortbrengendheid aangetoond.
(3)  (1): Per definitie zijn de vectoren van een basis steeds lineair onafhankelijk.
$4.79
Accede al documento completo:
Comprado por 16 estudiantes

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada


Documento también disponible en un lote

Reseñas de compradores verificados

Se muestran los 3 comentarios
1 año hace

1 año hace

1 año hace

4.3

3 reseñas

5
2
4
0
3
1
2
0
1
0
Reseñas confiables sobre Stuvia

Todas las reseñas las realizan usuarios reales de Stuvia después de compras verificadas.

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
StudentUA8 Universiteit Antwerpen
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
341
Miembro desde
3 año
Número de seguidores
140
Documentos
31
Última venta
1 semana hace

4.3

39 reseñas

5
24
4
8
3
4
2
2
1
1

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes