100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting Algebra HS4: Liniaire stelsels

Beoordeling
-
Verkocht
-
Pagina's
6
Geüpload op
09-04-2016
Geschreven in
2015/2016

Een ideale samenvatting van het hoofdstuk: Stelsels. Boek: Lineaire Algebra van Dirk keppens voor Industrieel ingenieurs (1e jaar).

Instelling
Vak









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Heel boek samengevat?
Nee
Wat is er van het boek samengevat?
Hoofdstuk 4
Geüpload op
9 april 2016
Aantal pagina's
6
Geschreven in
2015/2016
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Hoofdstuk 4: Vectorruimten (p 58-69)
4.1 Definities
Het combineren van (een) verzameling(en) met (een) bewerking(en) kan
aanleiding geven tot bijzondere structuren, die een specifieke naam krijgen.

4.1.1 Commutatieve groep

Stel dat we in een verzameling V een bewerking invoeren, die we hier
bijvoorbeeld voorstellen door +¿ en de optelling noemen, die aan de
volgende eigenschappen voldoet:

1. De bewerking is inwendig, overal gedefinieerd
∀ x 1 , x 2 ∈V : x 1+ x 2 ∈ V

2. De optelling is associatief
x
(¿ ¿ 2+ x3 )
∀ x 1 , x 2 , x3 ∈V : ( x 1+ x2 ) + x 3=x 1 +¿

3. Er is een neutraal element voor de optelling
∀ x ∈V : x+ 0=0+ x=x
4. Ieder element heeft een tegengesteld of invers element voor de
optelling
∀ x ∈V , ∃ (−x ) ∈V : x + (−x )=0

In dat geval noemen we de structuur V,+ een groep.

Geldt daarenboven:

5. De bewerking is commutatief
∀ x 1 , x 2 ∈V : x 1+ x 2=x 2 + x 1


4.1.2 Veld

Een veld F,+,• is eveneens een verzameling van elementen, die we nu
scalairen noemen.
Om van die verzameling een veld te maken, hebben we 2 bewerkingen nodig:
een optelling + en een vermenigvuldiging • en wel zodanig dat F,+ een
¿
commutatieve groep vormt evenals F {0 ¿ ¿ , • . Het neutraal element r deze

laatste is 1.

We beperken ons tot het veld van de reële getallen en het veld van de
complexe getallen.

1
Algebra hoofdstuk 4

, 4.1.3 Vectorruimte

Om een vectorruimte te vormen hebben we nodig:

 Een commutatieve groep V,+; de elementen ervan noemen we vectoren

(algemeen ⃗v )

 Een veld F,+,•
 Een bewerking van FxV naar V, scalaire vermenigvuldiging genaamd,
die aan de volgende eigenschappen voldoet
∀ r , s ∈ F , ∀ ⃗v , ⃗
w∈V : 1. ( rs ) ⃗v =r ( s ⃗v )

2. ( r + s ) ⃗v =r ⃗v +s ⃗v

3. r ( ⃗v +⃗
w )=r ⃗v +r ⃗
w

4. 1 ⃗v =⃗v

We spreken dan van de vectorruimte V,+,• over het veld F.

Wanneer geen twijfel mogelijk is over welk veld het gaat, hoeven we het niet te
vermelden.

4.2 Deelruimte van een vectorruimte
4.2.1 Voorbeeld

Zie p 60

4.2.2 Criterium voor deelruimte

Een deelverzameling W van een vectorruimte V,+,• over een veld F is zelf

een vectorruimte a.s.a. als
r⃗ w2 ∈ W 1
w1 +⃗ voor elke r ∈ F en voor alle

w 2 ∈W 1
w1, ⃗


Notatie: W ≺V


Dit betekent dat het volstaat enkel deze voorwaarde te checken om te weten of
een deelverzameling van een vectorruimte, zelf ook een vectorruimte is.

Als aan het criterium is voldaan, dan zijn ineens alle voorwaarden voor een
vectorruimte vervuld, en omgekeerd.

4.3 Basis en coördinaten
4.3.1 Lineaire combinaties



2
Algebra hoofdstuk 4

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
Janvdbj Katholieke Universiteit Leuven
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
23
Lid sinds
9 jaar
Aantal volgers
12
Documenten
26
Laatst verkocht
1 jaar geleden

2.9

10 beoordelingen

5
0
4
5
3
1
2
2
1
2

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen