100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Class notes

Scientific and Statistical Reasoning Summary Block 3

Rating
-
Sold
-
Pages
23
Uploaded on
02-12-2022
Written in
2022/2023

This document provides the necessary content to properly understand the content for the third block of SSR. The lectures are summarized perfectly: the necessary information is included and illustrations to better understand the concepts are provided.

Show more Read less
Institution
Course










Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Study
Course

Document information

Uploaded on
December 2, 2022
Number of pages
23
Written in
2022/2023
Type
Class notes
Professor(s)
Roeland
Contains
Lectures 20-28

Subjects

Content preview

Critical thinking about causality
Causal relationship- one thing happening makes the other thing MORE PROBABLE to
happen (statistical relationship)


Correlation does not imply causation
We don’t see causal relationship→ we infer since A happens after B
Causality (John Stuart Mill): X causes Y only if
- Priority: change in X precedes change Y
- Longitudinal study needed
- Consistency: change X varies systematically with change Y
- Covariance is needed
- Exclusivity: there is no alternative explanation for the
relationship
- Manipulation (groups) is needed


*Conclusion is not possible since exclusivity cannot be met (a
third variable can explain the relationship between the variables)


*Priority principle is also not met: self-esteem is considered an
effect not a cause


Reasoning errors
1. Post hoc ergo propter hoc (Y happens after X… then X is the cause)
a. X precedes Y (priority)--> focus on one aspect of Mill’s
criteria and ignore the other two (check for consistency and
exclusivity)
b. X covaries with Y (consistency/correlation)--> ignore priority
and exclusivity
c. X is the only possible cause of Y (exclusivity)--> ignore
priority and consistency



*Insufficient: needs other elements
*Non-redundant: crucial, presence
makes difference
*Unnecessary: there are other ways to
start fire (replaceable)
*Sufficient: factors (set of things)
together are sufficient

,How to check for non-redundancy: have two versions of the world (identical) only
difference is one factor → now you have an ideal counterfactual (perfect counterfactual
does not exist 🙂)
- Create experimental and control group (people are identical except for
randomness/random assignment) ⇒ that is experimental design:
- Useful because of manipulation of variables, random assignment,
counterfactual, control group


Threats to causality:
1. History: influences outside of intervention which influence outcome
2. Maturation: natural changes that may be confused with effect treatment
3. Selection: selection criteria for treatment related to outcomes of treatment/
systematic differences over conditions that could also cause observed effect
4. Attrition: participant's failure, systematically correlated with conditions (dropping
out of participants… condition gets affected)
5. Instrumentation: change in measuring instrument resulting in a difference between
pre-and post-measurement
6. Testing: effect of measurement on measurement (fatigue, habituation, etc.) exposure
to a test can affect scores on subsequent exposures
7. Regression to the mean: extreme scores will be followed by less extreme scores


DAG⇒ makes it easier to: be more specific about what we are
assuming about the causal relationships, identify potential
confounds when estimating the true causal effect of one variable
on another, understand some applied issues ⇒ justified to
conclude that a correlation is causal


Mediation: effect of X and Y is indirect, mediated by Z
Coufounder: common cause→ X and Y correlate because they
share a common cause… distorted association when no control Z
Collider: common effect… distorted association when control Z


*Whether you should adjust for third variable (Z) depends on the situation you are in→
make assumptions explicit→ use causal graphs to help you and the reader out
- Don’t control for collider or mediator but control for confounder (controlling: going
into detail and separating the variable)


Foster (2010)- swamp of ambiguity has arisen around statements about causality
1. Ignoring causality- some authors write down only correlations, without making any
statements about causality.

, 2. Statements of causality are recognized, but unclear assumptions- statements
about causal relationships based on correlational data, but often without specifying
assumptions.
3. Pseudo-correlational statements- no direct statements about causality, but clearly
implied in the conclusion.
● If all confounders are controlled for, a correlation between treatment and outcome
can be seen as causal
○ Does not mean that the more variables are controlled for, the more accurate
the estimation of the causal effect ⇒ purification principle
■ Problem of overcorrection: controlling for mediators on the causal
path could lead to an over\underestimation of the causal effect
■ Collider bias: controlling for common effects will bias the estimation
of a causal relationship between two variables



❖ Indirect effect→ X cannot directly cause Y
❖ For total effect of X Y, don’t control for mediator
❖ For direct effect of X Y, control for mediator
❖ Check effect of X to Z to then check for Z to Y
Mediator is caused by the treatment variable X and is a cause of
the outcome variables




Collider (common effect):
❖ X and Y cause Z⇒ common effect
❖ Do not control for third variable
➢ Otherwise collider bias
■ Correlation (negative) that does not exist
■ X No sprinkler and no rain = wet lawn X



Tinder example: thinking a beautiful personality and a beautiful face are mutually exclusive
➔ Negative correlation between beauty and personality ⇒ because conditioning on
collider ⇒ COLLIDER BIAS
➔ Attractiveness/personality are selected to go out with them on Tinder date
◆ To the degree to one is absent, the other is likely to be more present


Correlation & Simple regression
Simple regression only has one predictor
$6.82
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached


Also available in package deal

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
isabelamendoza University of Amsterdam
Follow You need to be logged in order to follow users or courses
Sold
82
Member since
3 year
Number of followers
59
Documents
20
Last sold
2 months ago

4.3

4 reviews

5
1
4
3
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions