100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Samenvatting Functies van meer variabelen (Voortgezette Analyse)

Rating
-
Sold
-
Pages
22
Uploaded on
05-11-2022
Written in
2022/2023

Een samenvatting voor het vak Voortgezette Analyse, het onderdeel Functies van meer variabelen. De samenvatting is gebaseerd op colleges, maar ook op de paragrafen uit Calculus (7e druk) die behoren tot de leerstof.

Institution
Module










Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Study
Module

Document information

Summarized whole book?
No
Which chapters are summarized?
14.1, 14.3, 14.7, 15.2, 15.3, 15.4, 15.7
Uploaded on
November 5, 2022
Number of pages
22
Written in
2022/2023
Type
Summary

Subjects

Content preview

V O O R T G E Z E T T E A N A L YS E
FUNCTIE S VAN ME E R VARIABE LE N

, FUNCTIES VAN MEER VARIABELEN

14.1 FUNCTIES VAN MEER VARIABELEN

Functies in de vorm 𝑦 = 𝑓(𝑥) leveren een grafiek in het xy-vlak op. Er kan ook een verband bestaan
die afhankelijk is van meer variabelen, zoals het volume van een cilinder.

Een functie van twee variabelen is een voorschrift dat aan ieder geordend paar (𝑥, 𝑦) uit een
verzameling 𝐷 ⊂ ℝ2 een waarde 𝑓(𝑥, 𝑦) ∈ ℝ toevoegt. D is het domein van f en het bereik is gelijk
aan de functiewaarden {𝑓(𝑥, 𝑦)| (𝑥, 𝑦) ∈ 𝐷}. We schrijven ook vaak 𝑓(𝑥, 𝑦) = 𝑧.

√𝑥+𝑦+1
Voorbeeld: 𝑓(𝑥, 𝑦) = 𝑥−1
√3+2+1 1
𝑓(3,2) = = 2 √6
3−1
Maar wat mag je hier niet invullen uit ℝ2 ? De noemer mag niet 0 worden en de uitdrukking
onder de wortel moet altijd groter dan of gelijk aan 0 zijn.
𝑥≠1
Domein is daarom: { 𝐷𝑓 = {(𝑥, 𝑦) ∈ ℝ2 | 𝑦 ≥ −𝑥 − 1 ∧ 𝑥 ≠ 1}
𝑥+𝑦+1 ≥ 0

In het xy-vlak ziet het domein er zo uit zoals hiernaast.




Voorbeeld: Bepaal het domein van 𝑓(𝑥, 𝑦) = 4√𝑥 − 5𝑦 .
𝑥 − 5𝑦 ≥ 0
−5𝑦 ≥ −𝑥
1
𝑦≤ 𝑥
5
1
𝐷 = {(𝑥, 𝑦) | 𝑦 ≤ 5 𝑥}


Voorbeeld: Bepaal het domein van 𝑓(𝑥, 𝑦) = √𝑥 2 + 𝑦 2 − 16
𝑥 2 + 𝑦 2 − 16 ≥ 0
𝑥 2 + 𝑦 2 ≥ 16
𝐷 = {(𝑥, 𝑦) | 𝑥 2 + 𝑦 2 ≥ 16}

𝑥+𝑦
Voorbeeld: Bepaal het domein van 𝑓(𝑥, 𝑦) =
𝑥−𝑦
𝑥−𝑦 ≠ 0
𝑦≠𝑥
𝐷 = {(𝑥, 𝑦) | 𝑦 ≠ 𝑥}

ln(2−𝑥)
Voorbeeld: Bepaal het domein van 𝑓(𝑥, 𝑦) = 1−𝑥 2−𝑦2
1 − 𝑥2 − 𝑦 2 ≠ 0
𝑥2 + 𝑦 2 ≠ 1
Én 2−𝑥 > 0
−𝑥 > −2
𝑥<2
𝐷 = {(𝑥, 𝑦) | 𝑥 2 + 𝑦 2 ≠ 1 ∧ 𝑥 < 2}



2

, Als f een functie van twee variabelen is waarvan het domein D is, dan is de grafiek van f de
verzameling van alle punten (𝑥, 𝑦, 𝑧) in ℝ3 zodat 𝑧 = 𝑓(𝑥, 𝑦) en (𝑥, 𝑦) ∈ 𝐷.

Voorbeeld: Schets de grafiek van de functie 𝑓(𝑥, 𝑦) = 6 − 3𝑥 − 2𝑦 ofwel 𝑧 = 6 − 3𝑥 − 2𝑦. Dit is een
vlak. Daarom gaan we op zoek naar de snijpunten met de assen.
Als 𝑧 = 0 en 𝑦 = 0 Als 𝑧 = 0 en x= 0 Als 𝑥 = 0 en 𝑦 = 0
6 − 3𝑥 = 0 6 − 2𝑦 = 0 𝑧=6
−3𝑥 = −6 2𝑦 = −6 Dus (0,0,6)
𝑥=2 𝑦=3
Dus (2,0,0) Dus (0,3,0)




Voorbeeld: Schets de grafiek van de functie 𝑓(𝑥, 𝑦) = √9 − 𝑥 2 − 𝑦 2
9 − 𝑥2 − 𝑦 2 ≥ 0
𝑥2 + 𝑦 2 ≤ 9
𝐷𝑓 = {(𝑥, 𝑦) ∈ ℝ2 | 𝑥 2 + 𝑦 2 ≤ 9} en 𝐵𝑓 = [0,4].




Voorbeeld: Bepaal het domein en bereik van 𝑓(𝑥, 𝑦) = 4𝑥 2 + 𝑦 2 en schets de grafiek.
𝐷𝑓 = {(𝑥, 𝑦) ∈ ℝ2 } en 𝐵𝑓 = [0, ∞).

Als 𝑥 = 0 dan 𝑧 = 𝑦 2 in het yz-vlak (uitgestrekte parabool).
Als 𝑦 = 0 dan 𝑧 = 4𝑥 2 in het xz-vlak.
In het xy-vlak hebben we een parabool 4𝑥 2 + 𝑦 2 = 𝑘.

De grafiek ziet eruit zoals hiernaast en hier spreken we van een elliptische paraboloïde.


De niveaukromme van een functie f van twee variabelen zijn de krommen met vergelijking
𝑓(𝑥, 𝑦) = 𝑘 waarbij k constant is en 𝑘 ∈ 𝐵𝑓 . Waar twee niveaukrommen dicht bij elkaar liggen
betekent dit dat de oppervlakte steil is. Als je over een contourlijn ‘loopt’ zal je niet stijgen/dalen. Deze
lijn laat zien waar de functie allemaal de waarde k heeft.




3
$4.22
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached


Also available in package deal

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
cdenhollander Hogeschool Windesheim
Follow You need to be logged in order to follow users or courses
Sold
597
Member since
8 year
Number of followers
526
Documents
32
Last sold
1 day ago

Hoi, ik ben Chantal en ik zit nu in het eerste jaar van de studie tweedegraads Lerarenopleiding wiskunde op Windesheim, te Zwolle. Hiervoor heb ik bijna anderhalf jaar Bedrijfskunde gestudeerd aan de HU. Hiervoor heb ik bijna elk vak samengevat en er komen mogelijk nog meer samenvattingen aan.

3.9

153 reviews

5
35
4
82
3
27
2
3
1
6

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these revision notes.

Didn't get what you expected? Choose another document

No problem! You can straightaway pick a different document that better suits what you're after.

Pay as you like, start learning straight away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and smashed it. It really can be that simple.”

Alisha Student

Frequently asked questions