Statistik 1 Überblick
Was sind Daten ?
83 Mio Deutsche
.
Merkel
Angela
Alter in Jahren
65 ; 30
Skalen niveaus
nominal : Gleichheit o .
Ungleichheit Geschlecht
Ordinul :
Reihenfolge Polit .
Interesse
intervall : Abstände definiert /interpretierbar ,
kein natürlicher Nullpunkt Temperatur c. A- Hering .
Sy
ratio : Verhältnis zw . Messwerten interpretierbar natürlicher Nullpunkt
,
Stimmenanteil Kand Lebensalt
.
>
.
in Jahren
, Maßzahlen für Verteilungen: Lagemaße / Maße zentr . Tendenz
"
beziehen sich auf die zentrale Tendenz ( Mitte ) der
Verteilung
>
„
arithmetische Mittel (E) metrisch
⑦ maximale Daten
nutzung
In {
E- arilh Mittel
E- × ;
.
)
Wert (
✗i
Merkmalsausprägung
-
-
①
reagiert empfindlich ggü
i "
Epi Summe von i -1 über alle beobachteten Werte .
-
-
Ausreißern
Mittelwert / Durchschnitt Durchschnitt d. Menschen
•
=
Grundprinzip alle Werte aufsummieren durch Zahl der Fälle teilen
•
: +
geht ab Intervall Skalen niveau
•
-
Variable kennen ist E durchschnitte beste
Prognose
◦
nur 1 .
Median (E)
I. Werte erst ordnen
⑦
berücksichtigt alle Mess -
Werte
ungerade Fallzahlln ) : ☒ =
✗
NÄ {59,1-0117,18} ⑦ robust
gegen Ausreißern
F
+7++22+1-21,122,213,033,374,5 }
Fallzahlln )
gerade
-
:
£
Durchschnitts mensch
Mitte der
Verteilung teilt die
Beobachtungen genau große Hälften
-15040150%
• =
,
in 2
↳ z.B das Einkommen Durchschnitts person nicht Durchschnittseinkommen
. ist er der
50% Quartil 0,25 Quartil unter dem Wert d. % drüber
25%
Beobachtungen
•
Person , 7
-
:
aller
-
:
Kia
0,75 Quartil 75% "
125% drüber
-
:
abordinal Skalen niveau
geht
• -
Modus ( ✗ )
{5,18^7,510,1818}
no
⑤ direkt ablesbar
-
* no
- -
✗ -18 ①
berücksichtigt keine
-
no
Ausprägung die häufigsten Ausreißer
=
vorkommt
•
,
am
( bei Intervall / Ratio
wenig sinnvoll )
Skalen niveaus ⊖ Information
geht für alle wenig
•
nominal Modus
ordinal Modus a. Median
ab intervall ( Modus ) ,
Median arith Mittel .
,
wenig
sinnvoll
, Streuungsmaße metrisch
Bsp .
gibt Variablen mit gl
: es 2 . arilh Mittel
.
→
verteilen sich
Wofür ?
wie stark weichen die
Beobachtungen vom E ab ?
-
gibt eine starke
Schwankung d
Beobachtungen
?
-
es .
repräsentieren ?
wie
gut unsere
Lagemaße die Daten /
Befragten
-
! auf Abständen
Streuung smaße basieren ab metrisches Skalen niveau !
→
Range / Spannweite
wie stark weicht der höchste Wert einer
Verteilung geringsten ab ?
vom
=
Abstand zw Minimum.
u . Maximum der betrachteten Daten reihe
✓ =
✗ -
✗
max min ⊖
reagiert Ausreißer
stark auf
↓
deshalb berechnet man dies mit dem Quarks abstand !
x n . a z # ; n . a s + - =z . r s .* + ; - )
Quartier
→
Ausreißer umgehen
% -
aua , µ :
„„
=
→ bestimmt nur den Index
qzj-xn.Q751-zxn.ci/-5+1lnlerquartilsabstand75o-
0,75%
-
Quart il : ✗
25% -
Quartil
Robuster Extremwerte
ggü .
betrachtet nur mittlere 50% der Daten
?⃝
Was sind Daten ?
83 Mio Deutsche
.
Merkel
Angela
Alter in Jahren
65 ; 30
Skalen niveaus
nominal : Gleichheit o .
Ungleichheit Geschlecht
Ordinul :
Reihenfolge Polit .
Interesse
intervall : Abstände definiert /interpretierbar ,
kein natürlicher Nullpunkt Temperatur c. A- Hering .
Sy
ratio : Verhältnis zw . Messwerten interpretierbar natürlicher Nullpunkt
,
Stimmenanteil Kand Lebensalt
.
>
.
in Jahren
, Maßzahlen für Verteilungen: Lagemaße / Maße zentr . Tendenz
"
beziehen sich auf die zentrale Tendenz ( Mitte ) der
Verteilung
>
„
arithmetische Mittel (E) metrisch
⑦ maximale Daten
nutzung
In {
E- arilh Mittel
E- × ;
.
)
Wert (
✗i
Merkmalsausprägung
-
-
①
reagiert empfindlich ggü
i "
Epi Summe von i -1 über alle beobachteten Werte .
-
-
Ausreißern
Mittelwert / Durchschnitt Durchschnitt d. Menschen
•
=
Grundprinzip alle Werte aufsummieren durch Zahl der Fälle teilen
•
: +
geht ab Intervall Skalen niveau
•
-
Variable kennen ist E durchschnitte beste
Prognose
◦
nur 1 .
Median (E)
I. Werte erst ordnen
⑦
berücksichtigt alle Mess -
Werte
ungerade Fallzahlln ) : ☒ =
✗
NÄ {59,1-0117,18} ⑦ robust
gegen Ausreißern
F
+7++22+1-21,122,213,033,374,5 }
Fallzahlln )
gerade
-
:
£
Durchschnitts mensch
Mitte der
Verteilung teilt die
Beobachtungen genau große Hälften
-15040150%
• =
,
in 2
↳ z.B das Einkommen Durchschnitts person nicht Durchschnittseinkommen
. ist er der
50% Quartil 0,25 Quartil unter dem Wert d. % drüber
25%
Beobachtungen
•
Person , 7
-
:
aller
-
:
Kia
0,75 Quartil 75% "
125% drüber
-
:
abordinal Skalen niveau
geht
• -
Modus ( ✗ )
{5,18^7,510,1818}
no
⑤ direkt ablesbar
-
* no
- -
✗ -18 ①
berücksichtigt keine
-
no
Ausprägung die häufigsten Ausreißer
=
vorkommt
•
,
am
( bei Intervall / Ratio
wenig sinnvoll )
Skalen niveaus ⊖ Information
geht für alle wenig
•
nominal Modus
ordinal Modus a. Median
ab intervall ( Modus ) ,
Median arith Mittel .
,
wenig
sinnvoll
, Streuungsmaße metrisch
Bsp .
gibt Variablen mit gl
: es 2 . arilh Mittel
.
→
verteilen sich
Wofür ?
wie stark weichen die
Beobachtungen vom E ab ?
-
gibt eine starke
Schwankung d
Beobachtungen
?
-
es .
repräsentieren ?
wie
gut unsere
Lagemaße die Daten /
Befragten
-
! auf Abständen
Streuung smaße basieren ab metrisches Skalen niveau !
→
Range / Spannweite
wie stark weicht der höchste Wert einer
Verteilung geringsten ab ?
vom
=
Abstand zw Minimum.
u . Maximum der betrachteten Daten reihe
✓ =
✗ -
✗
max min ⊖
reagiert Ausreißer
stark auf
↓
deshalb berechnet man dies mit dem Quarks abstand !
x n . a z # ; n . a s + - =z . r s .* + ; - )
Quartier
→
Ausreißer umgehen
% -
aua , µ :
„„
=
→ bestimmt nur den Index
qzj-xn.Q751-zxn.ci/-5+1lnlerquartilsabstand75o-
0,75%
-
Quart il : ✗
25% -
Quartil
Robuster Extremwerte
ggü .
betrachtet nur mittlere 50% der Daten
?⃝