100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Other

Formelsammlung für Mathe 2

Rating
-
Sold
-
Pages
9
Uploaded on
03-11-2022
Written in
2022/2023

Die Formelsammlung beschränkt sich auf alle nötigen Themen in Mathe 2 aus dem zweiten Semester des Studiums Wirtschaftsingenieurwesen an der DHBW Stuttgart

Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
November 3, 2022
Number of pages
9
Written in
2022/2023
Type
Other
Person
Unknown

Subjects

Content preview

1. Folgen und Reihen Bsp. Teilbarkeit:

1.1 Geometrische Reihe erkennen
1
Bsp.: Durchmesser Kreis ändert sich immer um 4

1𝑛
𝑎𝑛 = 2𝑟 ∗ ∑𝑛𝑘=0
4
(vor Summe die sich ändernde Größe & Basis „q“ ist um wieviel sich Reihe ändert &
n od. n+1 od. n-1 testen, um auf Anfangswert der Reihe zu kommen)
_______________________________________________________________
1.2 Grenzwert geometrischer Reihen

1−𝑞𝑛+1
𝑎𝑛 = ∑𝑛𝑘=0 𝑞 𝑛 =
1−𝑞
1−𝑞 𝑛+1
➔ = 1−𝑞
(Bruch hochbringen & Teil mit n lim 𝑣. 𝐺𝑙𝑒𝑖𝑐ℎ𝑢𝑛𝑔 laufen lassen)
𝑛→∞ ________________________________________________________________
➔ 𝑊𝑒𝑛𝑛 𝑎𝑙𝑡𝑒𝑟𝑛𝑖𝑒𝑟𝑒𝑛𝑑, 𝑑𝑎𝑛𝑛 "-" vor 𝑞
1.4 Grenzwert nach l´Hospital
________________________________________________________________
1.3 Vollständige Induktion
Fall 𝑛∞ ; ∞0 ∶ 𝑒 ln (𝐹𝑜𝑟𝑚𝑒𝑙) Hochzahl mit * schreiben (13𝑥 → ln (1 ∗ 3𝑥)) & geg. Grenze
Bsp.: ; für alle 𝑛 ≥ 2 laufen
0
Fall 0 ∗ ∞: Produkt in Bruch umschreiben, damit entsteht
IA: kleinster erlaubter Wert für n einsetzen (hier 2); linke mit rechter Seite vergleichen 0
0 ∞ 𝑎𝑏𝑙𝑒𝑖𝑡𝑒𝑛
IV: A(n) = Gleichung inkl. Bedingungen abschreiben Fall ; : l´Hospital anwenden -> & kürzen
0 ∞ 𝑎𝑏𝑙𝑒𝑖𝑡𝑒𝑛
1 𝑛+2
IB: A(n+1) = ∗ (1 − (𝑛+1)2 ) = links erweitern, rechts n+1 (falls Fall 𝑛∞ voranging ist Grenze 𝑒 𝐺𝑟𝑒𝑛𝑧𝑒 )
2(𝑛+1)
Aus IV 𝑛+1 0 ∞
IS:
1
( ) ∗ (1 − (𝑛+1)2 ) Fall ∞ − ∞: durch Umschreiben od. Erweitern in 0; ∞ ändern und l´Hospital anwenden
2𝑛
𝑛+2 ________________________________________________________________
ausformulieren und umrechnen, sodass (hier ) raus kommt & mit beenden
2(𝑛+1) 1.5 Grenzwert bei √±√
√±√
1. Komplette Gleichung mit erweitern
√±√

2. Zähler um √-Zeichen kürzen
3. Nenner X ausklammern; ACHTUNG! 1 X raus ≙ : x²
4. Gegen Grenzwert laufen lassen


1|Seite

, 2. Differenzialrechnung _______________________________________________________________
2.3 Tangenten- & Normalengleichung
2.1 Ableitungsregeln

Kettenregel: 𝑢(𝑣) = 𝑢´(𝑣) ∗ 𝑣´(𝑥)
Produktregel: 𝑢 ∗ 𝑣 = 𝑢´ ∗ 𝑣 + 𝑢 ∗ 𝑣´
𝑢 𝑢´∗𝑣−𝑢∗𝑣´
Quotientenregel: =
𝑣 𝑣²

_______________________________________________________________
2.2 Wichtige Ableitungen & Integrale _______________________________________________________________
1
2.4 Vollständige Kurvendiskussion
f(x) = arcsin(𝑥) → 𝑓´(𝑥) =
√1 + 𝑥² 2.4.1 Stetig & Differenzierbar
1
f(x) = arccos(𝑥) → 𝑓´(𝑥) = − 1. Linke Seite = Rechte Seite mit x=2, dann ist stetig
√1 − 𝑥²
2. Abl. Linke Seite = Abl. Rechte Seite mit x=2, dann ist differenzierbar
1 3. Erste Unbekannte berechnen und mit (1.) zweite berechnen
f(x) = arctan(𝑥) → 𝑓´(𝑥) =
1 + 𝑥²
1 2.4.2 Symmetrie d. Schaubildes
f(x) = tanh(𝑥) → 𝑓´(𝑥) = = 1 − 𝑡𝑎𝑛ℎ²(𝑥)
𝑐𝑜𝑠ℎ²𝑥²
Schaubild einer Funktion ist symmetrisch, wenn alle Potenzen gerade od. ungerade sind.
𝑐𝑜𝑠ℎ 1
f(x) = coth(𝑥) = → 𝑓´(𝑥) = − = 1 − 𝑐𝑜𝑡ℎ²(𝑥)
𝑠𝑖𝑛ℎ 𝑠𝑖𝑛ℎ²𝑥²
2.4.3 Nullstellen, wenn Zählergrad > Nennergrad

1 • Gleich 0 setzen
F(x) = x ∗ ln(x) − x → f(x) = ln(𝑥) → 𝑓´(𝑥) = ∗1
𝑥 • Horner Schema zur Bestimmung von Nullstellen
f(x) = 𝑎 𝑥 → 𝑓´(𝑥) = 𝑎 𝑥 (ln(𝑎)) → 𝑓´´(𝑥) = 𝑎 𝑥 (ln(𝑎))²
𝑎
F(x) = 𝑒 𝑏𝑥+𝑐 → f(x) = 𝑎𝑒 𝑏𝑥+𝑐 → 𝑓´(𝑥) = 𝑎 ∗ 𝑏 ∗ 𝑒 𝑏𝑥+𝑐 Beim Raten mit 0 anfangen und dann immer ± Wert,
𝑏
der durch Konstante teilbar ist. (hier C=3 -> 0, ±1, ±3)
Ableitung Winkel-fkt.:
sin(x) – cos(x) – (-sin(x)) – (-cos(x)) – sin(x)…
sinh(x) – cosh(x) – sinh(x) …
𝑒 𝑥 −𝑒 −𝑥 𝑒 𝑥 +𝑒 −𝑥
sinh 𝑥 = cosh 𝑥 =
2 2
X = anderer Wert einsetzen -> Ergebnis unten rechts (hier 0) zeigt an, was passiert,
wenn man den Wert in die Gleichung einsetzt.

2|Seite
$10.23
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
Mistery0803

Get to know the seller

Seller avatar
Mistery0803 Duale Hochschule Baden-Württemberg Stuttgart (Stuttgart)
Follow You need to be logged in order to follow users or courses
Sold
5
Member since
3 year
Number of followers
1
Documents
5
Last sold
8 months ago

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions