100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.6 TrustPilot
logo-home
Class notes

Samenvatting TB131B Differentiaalvergelijkingen & Lineaire Algebra TU Delft **ALLE COLLEGES**

Rating
4.0
(1)
Sold
5
Pages
29
Uploaded on
03-11-2022
Written in
2022/2023

In dit document staan alle aantekeningen van de colleges samengevat, met voorbeeldopdrachten en uitleg erbij. Dit is van het vak Differentiaalvergelijkingen en Lineaire algebra uit het eerste jaar. Deze samenvatting kan gebruikt worden als aantekeningen om zelf niet naar het college te gaan, voorbereiding, of om het goed na te lezen.

Show more Read less
Institution
Course










Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
November 3, 2022
File latest updated on
November 3, 2022
Number of pages
29
Written in
2022/2023
Type
Class notes
Professor(s)
Tom vroegrijk
Contains
All classes

Subjects

Content preview

Differentiaalvergelijkingen en Lineaire Algebra; Samenvatting Tentamen

Inhoudsopgave
Lecture 1; Differentiaalvergelijkingen.................................................................................3
Constante bepalen in algemene oplossing.............................................................................3
Welke functie is een oplossing voor deze differentiaalvergelijking?......................................3
Richtingsveld...........................................................................................................................3
Evenwichtsoplossingen...........................................................................................................3
Soorten evenwichten..............................................................................................................5
Lecture 2; Inverse functies en impliciete differentiatie.........................................................6
Impliciete functies afleiden.....................................................................................................6
Inverse functies.......................................................................................................................6
Voorbeeldopgaves inverse functies........................................................................................8
Lecture 3; Integralen en primitieven....................................................................................9
Integraalfuncties.....................................................................................................................9
Substitutiemethode................................................................................................................9
Voorbeelden met....................................................................................................................9
Lecture 4; Partiële integratie.............................................................................................10
Standaardregel......................................................................................................................10
Voorbeeld..............................................................................................................................11
Lecture 5; Separabele differentiaalvergelijking.................................................................12
Standaardregel......................................................................................................................12
Voorbeelden..........................................................................................................................12
Lecture 6; Lineaire differentiaalvergelijkingen...................................................................13
Standaardregel......................................................................................................................13
Voorbeeld..............................................................................................................................13
Lecture 7; Partieel breuken...............................................................................................14
Standaardregel......................................................................................................................14
Speciaal geval 1.....................................................................................................................14
Speciaal geval 2.....................................................................................................................14
Lecture 8; Complexe getallen............................................................................................15
Regels....................................................................................................................................15
Voorbeelden..........................................................................................................................15
Polaire vorm..........................................................................................................................15
Complexe exponenten..........................................................................................................16
Lecture 9; Lineaire algebra introductie..............................................................................17
Stelsels...................................................................................................................................17

, Echelon vorm........................................................................................................................17
Gereduceerde echelonvorm.................................................................................................17
Consistent of inconsistent?...................................................................................................18
Oneindige oplossingen..........................................................................................................18
Lecture 10; Span en vectorvergelijkingen..........................................................................19
Scalaire vermenigvuldigingen...............................................................................................19
Optellen.................................................................................................................................19
Lineaire combinaties.............................................................................................................19
Span.......................................................................................................................................21
Voorbeeld met span..............................................................................................................21
Voorbeeld met onbekende...................................................................................................21
Lecture 11; Matrixvectorproduct en oplossingsverzamelingen..........................................22
Matrixvectorproduct.............................................................................................................22
Dotproduct en inproduct......................................................................................................22
Matrixvectorproduct voor grote matrixen...........................................................................22
Oplossingsverzamelingen......................................................................................................23
Lecture 12; Lineaire onafhankelijkheid..............................................................................24
Equivalente stellingen...........................................................................................................24
Equivalente stellingen 2........................................................................................................24
Lecture 13; Lineaire transformaties...................................................................................25
Stelling...................................................................................................................................25
Voorbeeldvraag.....................................................................................................................25
Transformaties in het vlak....................................................................................................25
Voorbeeldvraag.....................................................................................................................25
Lecture 14; Matrix operaties.............................................................................................26
Soorten matrixen..................................................................................................................26
Optellen.................................................................................................................................26
Vermenigvuldigen.................................................................................................................26
Transponeren........................................................................................................................26
Samenstellen van lineaire transformaties............................................................................26
Lecture 15; Inverse transformatie......................................................................................28
Inverse berekenen................................................................................................................28
Stelling...................................................................................................................................28
Overige rekenregels..............................................................................................................28
Samenkomst van alle Lineaire Algebra.................................................................................29

, Lecture 1; Differentiaalvergelijkingen
dy
De afgeleide van y(x) is ook wel geschreven als y=
dx

Constante bepalen in algemene oplossing
Hoe bepaal je C in een algemene oplossing? [voorbeeld]
C 2
De algemene oplossing van x y ' + y=3 x 2 → y ( x )= + x
x
Je bepaalt de C uit deze vergelijking door een gegeven; y ( 1 )=4
C
Dit vul je in de formule met de C; 4= +1
1
C
3=
1
C=3
3 2
De algemene oplossing van x y ' + y=3 x 2 → y ( x )= + x
x

Welke functie is een oplossing voor deze differentiaalvergelijking?
Een vraag kan zijn; welke functie is een oplossing voor de differentiaalvergelijking
x y + y=6 x ?
' 2


Bij een multiple-choice vraag kan je als antwoord bijvoorbeeld hebben.
3 2
y= +2 x , dit vul je dan in de bovenstaande formule voor y, en dit leidt je af tot
x
' −3
y = 2 + 4 x , dit vul je ook in de formule in voor y', als er dan 6 x 2 uit komt is het
x
3 2
antwoord dus y= +2 x .
x

Richtingsveld
Op een tentamen kun je een vraag krijgen van welke functie bij een richtingsveld
hoort. Je krijgt dan vaak een functie; y ' =x + y
y staat hierin voor het richtingscoëfficiënt
'


y ' >0 betekend dat de pijl in het richtingsveld omhoog gaat.
y =1 betekend dat de pijl in het richtingsveld 45° omhoog gaat.
'


y ' =0 betekend dat de pijl in het richtingsveld horizontaal ligt.
y <0 betekend dat de pijl in het richtingsveld omlaag gaat.
'




Evenwichtsoplossingen
Een evenwichtsoplossing is ook wel een rechte lijn in een richtingsveld waar alle
pijlen dezelfde kant op wijzen. Er geldt in een constante functie y ' =0 ; drie soorten
1. stabiel evenwicht; de pijlen rond het evenwicht wijzen allemaal ernaartoe.
2. instabiel evenwicht; de pijlen rond het evenwicht wijzen allemaal ervan af.
3. semi-stabiel evenwicht; de pijlen rond het evenwicht wijzen aan de ene kant naar
het evenwicht toe, en aan de andere kant ervan af.
$8.43
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached


Also available in package deal

Reviews from verified buyers

Showing all reviews
3 year ago

4.0

1 reviews

5
0
4
1
3
0
2
0
1
0
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
Noudreijn Technische Universiteit Delft
Follow You need to be logged in order to follow users or courses
Sold
24
Member since
3 year
Number of followers
11
Documents
11
Last sold
4 months ago
Noud's Samenvattingen

4.0

1 reviews

5
0
4
1
3
0
2
0
1
0

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions