100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Other

Formelsammlung Mathe 1

Rating
-
Sold
3
Pages
8
Uploaded on
03-11-2022
Written in
2021/2022

Der Inhalt beschränkt sich auf die wichtigsten Themen für Mathe 1 im ersten Semester im Studiengang Wirtschaftsingenieurwesen an der DHBW Stuttgart.

Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
November 3, 2022
Number of pages
8
Written in
2021/2022
Type
Other
Person
Unknown

Subjects

Content preview

1. Komplexe Zahlen: 1.5.2 Trigonometrisch/polar zurück in kartesisch
𝑧 = |𝑧| ⋅ (cos 𝜑 + 𝑖 ⋅ sin 𝜑) → 𝑧 = 𝑎 + 𝑏𝑖
1.1 Komplexe Zahl / konjungiert komplexe Zahl mit 𝑎 = |𝑧| ∙ cos 𝜑 und 𝑏 = |𝑧| ∙ sin 𝜑
𝑧 = 𝑎 + 𝑏𝑖 𝑧̅ = 𝑎 − 𝑏𝑖 √−1 = ±𝑖 𝑖 2 = −1 1.6 Rechnen mit Komplexen Zahlen
________________________________________________________________
1.6.1 Addition: 𝑧1 + 𝑧2 = (𝑎 + 𝑏𝑖) + (𝑐 + ⅆ𝑖) = (𝑎 + 𝑐) + (𝑏 + ⅆ)𝑖
1.2 Gleichheit zweier Komplexer Zahlen
1.6.2 Subtraktion: 𝑧1 − 𝑧2 = (𝑎 + 𝑏𝑖) − (𝑐 + ⅆ𝑖) = (𝑎 − 𝑐) + (𝑏 − ⅆ)𝑖
𝑧1 = 𝑥1 + 𝑖𝑦1 und 𝑧𝑧 = 𝑥2 + 𝑖𝑦2 gilt: 𝑧1 = 𝑧2 , wenn 𝑥1 = 𝑥2 ; 𝑦1 = 𝑦2
1.6.3 Multiplikation:
________________________________________________________________
𝑧1 ∙ 𝑧2 = (𝑎 + 𝑏𝑖) ∙ (𝑐 + ⅆ𝑖) = 𝑎𝑐 + 𝑎ⅆ𝑖 + 𝑐𝑏𝑖 + 𝑏ⅆ𝑖 2 = (𝑎𝑐 − 𝑏ⅆ) + 𝑖 ∙ (𝑎ⅆ + 𝑏𝑐)
1.3 Betrag einer Komplexen Zahl
|𝑧| = |𝑎 + 𝑏𝑖| = √𝑎2 + 𝑏 2 = √𝑧 ⋅ 𝑧̅ 𝑧1 ∙ 𝑧2 = |𝑧1 | ∙ 𝑒 𝑖𝜑1 ∙ |𝑧2 | ∙ 𝑒 𝑖𝜑2 = |𝑧1 | ∙ |𝑧2 | ∙ 𝑒 𝑖(𝜑1 +𝜑2 ) (Drehstreckung)
________________________________________________________________ 1.6.4 Division:
1.4 Darstellungsformen 𝑧1 𝑎 + 𝑏𝑖 𝑎 + 𝑏𝑖 𝑐 − ⅆ𝑖 (𝑎𝑐 + 𝑏ⅆ) − 𝑖 ∙ (𝑎ⅆ + 𝑏ⅆ) 𝑎𝑐 + 𝑏ⅆ 𝑏𝑐 − 𝑎ⅆ
= = ∙ = 2 2
= 2 2
+𝑖∙ 2
1.4.1 Algebraische/kartesische Form (Normalform) 𝑧2 𝑐 + ⅆ𝑖 𝑐 + ⅆ𝑖 𝑐 − ⅆ𝑖 𝑐 +ⅆ 𝑐 +ⅆ 𝑐 + ⅆ²
𝑧 = 𝑎 + 𝑏𝑖 a: Realteil von z b: Imaginärteil von z 𝑧1 |𝑧 |∙𝑒 𝑖𝜑1 |𝑧 |
= |𝑧1 |∙𝑒 𝑖𝜑2 = |𝑧1 | ∙ 𝑒 𝑖(𝜑1 −𝜑2 )
𝑧2 2 2
1.4.2 Trigonometrische / Polarform _________________________________________________________________
𝑧 = |𝑧| ⋅ (cos 𝜑 + 𝑖 ⋅ sin 𝜑) konjungiert: 𝑧̅ = |𝑧| ⋅ (cos 𝜑 − 𝑖 ⋅ sin 𝜑) 1.7 Potenzen
1.4.3 Exponentialform 𝑧 𝑛 = (𝑎 + 𝑏𝑖)𝑛 = (|𝑧| ∙ 𝑒 𝑖𝜑 )𝑛 = |𝑧|𝑛 ∙ 𝑒 𝑖𝑛𝜑 = |𝑧|𝑛 ∙ (cos(𝑛𝜑) + 𝑖 ∙ sin(𝑛𝜑))
𝑧 = |𝑧| ⋅ 𝑒 𝑖𝜑 konjungiert: 𝑧̅ = |𝑧| ∙ 𝑒 −𝑖𝜑 De Moivresche Formel: (𝐜𝐨𝐬 𝝋 + 𝒊 ∙ 𝐬𝐢𝐧 𝝋)𝒏 = (𝐜𝐨𝐬(𝒏𝝋) + 𝒊 ∙ 𝐬𝐢𝐧(𝒏𝝋))
________________________________________________________________ _________________________________________________________________
1.5 Umrechnung zwischen den Darstellungsformen 1.8 Wurzel (Trigonometrische Tabelle)
𝜑+2𝜋𝑘
1.5.1 Kartesisch in Trigonometrisch 𝑛 𝑖( ) 𝑛 𝜑+2𝜋𝑘 𝜑+2𝜋𝑘
𝑧𝑘 = √|𝑧| ∙ 𝑒 𝑛 = √|𝑧| ∙ cos ( 𝑛
)+ 𝑖 ∙ sin ( 𝑛
) mit k = 0,1,2,…
𝑧 = 𝑎 + 𝑏𝑖 → 𝑧 = |𝑧| ∙ (cos 𝜑 + 𝑖 ∙ sin 𝜑) Bsp.: Alle 5ten Wurzeln von z²
mit |𝑧| = √𝑎2 + 𝑏 2 = √𝑧 ∙ 𝑧̅ und 𝜑=
𝑏
arctan ( ) 5 𝑖(
𝜑+2𝜋0
) 𝜑 + 2𝜋 ∗ 0 𝜑 + 2𝜋 ∗ 0
𝑎 𝑧0 = √|𝑧| ∙ 𝑒 5 = 5 ∙ cos ( ) + 𝑖 ∙ sin ( )
5 5
Korrekturwerte: 5 𝑖(
𝜑+2𝜋1
) 𝜑 + 2𝜋 ∗ 1 𝜑 + 2𝜋 ∗ 1
𝑧1 = √|𝑧| ∙ 𝑒 5 = 5 ∙ cos ( ) + 𝑖 ∙ sin ( )
1.-Quadrant: - 2/3 Quadrant: +𝜋 4. Quadrant: +2𝜋 5 5
a > 0, b > 0 a<0 a > 0, b < 0 _________________________________________________________________
𝜋 3𝜋
𝜑 = 2 , a = 0, b > 0 𝜑= , a = 0, b < 0 1.9 Verschiebesätze
2
𝜑 = 𝜋 , a <0 , b = 0 𝜑 = 0, a = 0, b = 0; a > 0, b = 0 𝜋 𝜋
cos 𝑥 = sin(𝑥 + 2 ) sin 𝑥 = cos(𝑥 − 2 )

, 1.10 Überlagerung gleichfrequenter Schwingungen 𝑌1 + 𝑌2 = 𝑌 2. Matrizen:
1. 𝑌1 𝑢. 𝑌2 in eine Form bringen (sin/cos)
2. 𝑌1 𝑢. 𝑌2in Exponentialform umschreiben und 𝑒 𝜔𝑡 ausklammern 𝑎 𝑏 𝑐 𝑎 ⅆ 𝑔
3. Exponentialformen in Polarformen umschreiben 2.1 Transponieren: (ⅆ 𝑒 𝑓) → (𝑏 𝑒 ℎ)
(negativer Winkel in sin & cos beachten und ggf. raus ziehen siehe 𝑔 ℎ 𝑖 𝑐 𝑓 𝑖
Additionstheorem) 2.2 Determinante:
4. Jeweils katesische Form berechnen 𝑎12 𝑎11
 (2x2) – Matrix: det (𝑎
) = 𝑎11 ∙ 𝑎22 − 𝑎12 ∙ 𝑎21
5. Beide katesischen Formen addieren(=Y) 21 𝑎22
 (3x3) – Matrix: Regel nach Sarrus
6. |𝑌| = A berechnen 𝑎 𝑏 𝑐 𝑎 𝑏
𝑏 180°∗ 𝜑
7. 𝜑 = arctan (𝑎) + Korrektur → 𝜋
= 𝜑° ⅆ 𝑒 𝑓 ⅆ 𝑒 𝑎 ∗ 𝑏 ∗ 𝑐 + ⋯− 𝑐 ∗ 𝑒 ∗ 𝑔 −⋯
8. Y = 𝐴 ∗ 𝑒 𝑖(𝜔𝑡+𝜑 )
= 𝐴 ∗ sin(𝜔𝑡 + 𝜑) 𝑔 ℎ 𝑖 𝑔 ℎ
 > - Matrix: Mit Entwicklungssatz; Spalte od. Zeile mit meisten 0 suchen
1.11 Additionstheoreme beweisen Von übrigen Wert x Zeile und Spalte streichen und vor übrige Matrix
multiplizieren; beachte + - + - + Schema für Wert x!
𝑒 𝑖𝑥 = cos 𝑥 + 𝑖 ∙ sin 𝑥 cos(−𝑥) = cos 𝑥
sin 𝑥
𝑒 −𝑖𝑥 = cos 𝑥 − 𝑖 ∙ sin 𝑥 sin(−𝑥) = −sin 𝑥 tan 𝑥 =
cos 𝑥 det(𝐴𝜇 ) = 0: • Nullzeile / -spalte
↓  𝐿 ∈ 𝑅\{𝜇1 } • Zeilen/Spalten linear abhängig / vielfaches v. einander
𝑒 𝑖𝑥 +𝑒 −𝑖𝑥 𝑒 𝑖𝑥 −𝑒 −𝑖𝑥 −𝑒 𝑖𝑥 +𝑒 −𝑖𝑥 • Summe zweier Zeile/Spalten = Summe anderer Zeile/Spalte
cos 𝑥 = sin 𝑥 = tan 𝑥 = 𝑒 𝑖𝑥 +𝑒 −𝑖𝑥
∙𝑖
2 2𝑖 • Identische Zeile/Spalten
Additionstheorem 1: 2 ∙ sin 𝑥 ∙ cos 𝑥 = 2 sin(2𝑥) 2.3 Inverse det(𝐴) ≠ 0 , so ist A invertierbar
Additionstheorem 2: cos² 𝑥 − sin2 𝑥 = cos(2𝑥)
1 ⅆ −𝑏 𝑎 𝑏
_________________________________________________________________ 𝐴−1 = 𝑎𝑑−𝑏𝑐 ∙ ( ) → 𝐴=( ) mit det(𝐴) ≠ (𝐴|𝐼)  (𝐼|𝐴−1 )
−𝑐 𝑎 𝑐 ⅆ
1.12 Periodizität _________________________________________________________________

sin 𝑥 = sin(𝑥 + 2𝜋𝑘) cos 𝑥 = cos(𝑥 + 2𝜋𝑘) 2.4 Rechenregeln:
𝐴 ∙ 𝐴−1 = 𝐼
𝑒 𝑖(2𝜋𝑘) = 1 → cos(2𝜋𝑘) + 𝑖 ∙ sin(2𝜋𝑘) = 1 𝐴 ∙ 𝐵 = 𝐵 ∙ 𝐴 → 𝑘𝑜𝑚𝑚𝑢𝑡𝑎𝑡𝑖𝑣
−1 −1 −1
_________________________________________________________________ (𝐴 ∙ 𝐵) = 𝐵 ∙𝐴
𝐴 ∙ 𝐼 = 𝐴 (Einheitsmatrix)
−1 −1 −1 −1
1.13 Gebietseinteilung (𝐴 ∙ 𝐵 ∙ 𝐶) = 𝐶 ∙𝐵 ∙𝐴
Umformen Bsp.:
𝑇 𝑇 𝑇
Kreisgleichung: )2
(𝑥 − 𝑚1 + (𝑥 − 𝑚2 = 𝑟² )2
M(x0/y0); r (𝐴 ∙ 𝐵) = 𝐵 ∙ 𝐴
2 2
𝐴−1 ∙ 𝑋 ∙ 𝐶 −1 + 𝐴−1 ∙ 𝑋 = 𝐷 |𝐴 ∙
Bsp.: 𝑥 + 𝑦 − 𝑥 + 2𝑦 = 4 −1 −1 𝑇 𝑇
(𝐴 ) = 𝐴 = (𝐴 )
Variablen auf eine Seite & Ganze Zahlen auf andere; dann Quadratisch ergänzen: 𝑋 ∙ 𝐶 −1 + 𝑋 = 𝐴 ∙ 𝐷 |( )
𝑇)
1 2 2 2 1 2 2 2 det(𝐴) = det(𝐴
= 𝑥2 − 𝑥 + (2) + 𝑦 2 + 2𝑦 + (2) =4+ (2) + (2) „ergänzen“ 𝑋 ∙ (𝐶 −1 + 𝐼) = 𝐴 ∙ 𝐷 | ∙ (𝐶 −1 + 𝐼)−1
−𝑛 (𝐴−1 )𝑛
2 2 𝐴 =
1 2 21 1 21
=(𝑥 − (2)) + (𝑦 + (2)) = → M( 2 / -1 ); r =√ 4 𝑋 = 𝐴 ∙ 𝐷 ∙ (𝐶 −1 + 𝐼)−1
4 (𝐴𝑛 )−1 = (𝐴−1 )𝑛
!=0 !=0
$9.63
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
Mistery0803

Get to know the seller

Seller avatar
Mistery0803 Duale Hochschule Baden-Württemberg Stuttgart (Stuttgart)
Follow You need to be logged in order to follow users or courses
Sold
5
Member since
3 year
Number of followers
1
Documents
5
Last sold
8 months ago

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can immediately select a different document that better matches what you need.

Pay how you prefer, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card or EFT and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions