Chapitre 1 : statistique descriptive
1. Présenter et organiser les données
A) Ensembles
Ensemble homogène : un seul groupe de données ''homogeneous population''
Ensemble hétérogène : plusieurs groupes de données ''heterogeneous population''
Groupes indépendants : aucune raison d'associer les données d'un groupe avec
celles de l'autre (nombre de données peuvent être différentes)
Groupes appareillés : on peut associer chaque donnée d'un groupe à une seule
donnée d'un autre groupe (nombre de données identiques)
Groupes hybrides : certains éléments communs
B) Effectifs
-> Nombre d'objets de mesures
Groupes indépendants : N = N1 + N2 Groupes appareillés : N = Nx + Ny
C) Types de données
Données métriques ''numerical data''
=> mesures, comptages
Continues : sans interruption
Discrètes : avec interruptions
Données non métriques ''non numerical data''
=> processus de classement, de répartition
Ordinales par rang : hiérarchie, ordre (si 2 données on un même rang, on prend
la moyenne des 2 rangs et on l'applique aux 2)
Ordinales par catégories :
hiérarchie, ordre (classes
mutuellement
exclusives : dans 1 classe,
pas dans une autre)
Nominales : hiérarchie,
ordre (classes
mutuellement
exclusives)
D) Fréquence
1
,Fi : indique combien d'éléments de l'ensemble sont caractérisés par cette donnée.
N = somme de toutes les fréquences
E) Petits effectifs
Données brutes : données telles qu'elles ont été récoltées, sans souci d'ordonnancement
Suite ordonnée : résultat du rangement des données brutes par ordre croissant ou
décroissant
Données non métriques ordinales par rang : /
Données non métriques ordinales par catégories : RECTANGLE : chaque catégorie
est représentée par une portion de la surface du rectangle
Données non métriques nominales : DIAGRAMME CIRCULAIRE ''circle diagrams''
''pie charts'' : totalité de la surface = 1 (100%)
Données métriques : GRAPHE EN BATONNETS : données en abscisses et fréquences
en ordonnées
F) Grands effectifs
HISTOGRAMME : données groupées en classe (1 classe = 1 rectangle)
Domaine de la variable : ensemble de toutes les données théoriquement
observables.
=> ex : côtes de 0 à 10 : D.V =
Étendue des données : écart entre la + grande et la + petite valeur
Nombre de valeurs possibles : nombre de valeurs différentes que peuvent prendre
les données réelles
2
, (Étendue des données / précision de la mesure) + 1
Représentation graphique :
Limites de classe (lk) : valeurs extrêmes des données de chaque classe
Bornes de classe (Bk) : valeur située entre la limite supérieure d'une classe et la
limite inférieure de la classe suivante
Centres de classe (Ck) : moyenne des deux bornes
Intervalle de classe (ik) : amplitude de chaque classe (borne sup. - borne inf.)
Effectifs de classe (fk) : nombre de données comprises dans une classe
Proportions d'effectifs (pk) = fk / N : effectif de classe divisé par l'effectif total
Densités d'effectifs (yk) = pk / ik : proportion d'effectif de la classe divisée par
l'intervalle de celle-ci.
Construction de l'histogramme :
Abscisse : amplitude
Ordonnée : densité d'effectifs
2. Caractériser l'ensemble des données
-> indices statistiques ''statistical indices''(sing : index)
A) Indices de position
I. Moyenne (m, X) ''mean''
-> Indice de tendance centrale : valeur de la variable qui représente au mieux
l'ensemble des données.
Elle est influencée par les valeurs extrêmes de la distribution.
m = somme des données / N
Notation groupes indépendants : N1 et m1 / N2 et m2
Notation groupes appareillés : NX et mX / Ny et my
Moyenne pondérée ''weighted mean''
A partir de nombres : m = (sommes des données X effectifs) / N
3
1. Présenter et organiser les données
A) Ensembles
Ensemble homogène : un seul groupe de données ''homogeneous population''
Ensemble hétérogène : plusieurs groupes de données ''heterogeneous population''
Groupes indépendants : aucune raison d'associer les données d'un groupe avec
celles de l'autre (nombre de données peuvent être différentes)
Groupes appareillés : on peut associer chaque donnée d'un groupe à une seule
donnée d'un autre groupe (nombre de données identiques)
Groupes hybrides : certains éléments communs
B) Effectifs
-> Nombre d'objets de mesures
Groupes indépendants : N = N1 + N2 Groupes appareillés : N = Nx + Ny
C) Types de données
Données métriques ''numerical data''
=> mesures, comptages
Continues : sans interruption
Discrètes : avec interruptions
Données non métriques ''non numerical data''
=> processus de classement, de répartition
Ordinales par rang : hiérarchie, ordre (si 2 données on un même rang, on prend
la moyenne des 2 rangs et on l'applique aux 2)
Ordinales par catégories :
hiérarchie, ordre (classes
mutuellement
exclusives : dans 1 classe,
pas dans une autre)
Nominales : hiérarchie,
ordre (classes
mutuellement
exclusives)
D) Fréquence
1
,Fi : indique combien d'éléments de l'ensemble sont caractérisés par cette donnée.
N = somme de toutes les fréquences
E) Petits effectifs
Données brutes : données telles qu'elles ont été récoltées, sans souci d'ordonnancement
Suite ordonnée : résultat du rangement des données brutes par ordre croissant ou
décroissant
Données non métriques ordinales par rang : /
Données non métriques ordinales par catégories : RECTANGLE : chaque catégorie
est représentée par une portion de la surface du rectangle
Données non métriques nominales : DIAGRAMME CIRCULAIRE ''circle diagrams''
''pie charts'' : totalité de la surface = 1 (100%)
Données métriques : GRAPHE EN BATONNETS : données en abscisses et fréquences
en ordonnées
F) Grands effectifs
HISTOGRAMME : données groupées en classe (1 classe = 1 rectangle)
Domaine de la variable : ensemble de toutes les données théoriquement
observables.
=> ex : côtes de 0 à 10 : D.V =
Étendue des données : écart entre la + grande et la + petite valeur
Nombre de valeurs possibles : nombre de valeurs différentes que peuvent prendre
les données réelles
2
, (Étendue des données / précision de la mesure) + 1
Représentation graphique :
Limites de classe (lk) : valeurs extrêmes des données de chaque classe
Bornes de classe (Bk) : valeur située entre la limite supérieure d'une classe et la
limite inférieure de la classe suivante
Centres de classe (Ck) : moyenne des deux bornes
Intervalle de classe (ik) : amplitude de chaque classe (borne sup. - borne inf.)
Effectifs de classe (fk) : nombre de données comprises dans une classe
Proportions d'effectifs (pk) = fk / N : effectif de classe divisé par l'effectif total
Densités d'effectifs (yk) = pk / ik : proportion d'effectif de la classe divisée par
l'intervalle de celle-ci.
Construction de l'histogramme :
Abscisse : amplitude
Ordonnée : densité d'effectifs
2. Caractériser l'ensemble des données
-> indices statistiques ''statistical indices''(sing : index)
A) Indices de position
I. Moyenne (m, X) ''mean''
-> Indice de tendance centrale : valeur de la variable qui représente au mieux
l'ensemble des données.
Elle est influencée par les valeurs extrêmes de la distribution.
m = somme des données / N
Notation groupes indépendants : N1 et m1 / N2 et m2
Notation groupes appareillés : NX et mX / Ny et my
Moyenne pondérée ''weighted mean''
A partir de nombres : m = (sommes des données X effectifs) / N
3