100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Lecture notes

Apuntes Tema 1 ALGII Latex

Rating
-
Sold
-
Pages
16
Uploaded on
29-09-2022
Written in
2021/2022

Apuntes completos del Tema 1 de la asignatura Algebra Lineal y Geometria II a Latex

Institution
Module










Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Module

Document information

Uploaded on
September 29, 2022
Number of pages
16
Written in
2021/2022
Type
Lecture notes
Professor(s)
Maria cruz fernandez fernandez
Contains
All classes

Subjects

Content preview

ALG2. José Martı́nez Suárez



Tema 1
El espacio proyectivo. El espacio afı́n como subespacio del proyectivo. Sistemas de
referencia. Dualidad.



1. El espacio proyectivo
Sean K un cuerpo y n ≥ 0 un entero. Se considera Kn+1 con su estructura de espacio
vectorial y se define la siguiente relación binaria en Kn+1 \{0}:

u ∼ v ⇔ ∃α ∈ K tal que u = αv

Si u ∈ Kn+1 es un vector no nulo, su clase de equivalencia se denota [u]. Se tiene por
tanto la igualdad
[u] = {αu : α ∈ K, α 6= 0}


Definición
Se llama espacio proyectivo n-dimensional definido sobre K, y se denota Pn (K),
al conjunto de las clases de equivalencia de la relación ∼, es decir

Kn+1 \{0}
Pn (K) :=


Notemos que la relación ∼ es una relación de equivalencia. Los elementos de Pn (K) serán
llamados puntos.

Un punto de Pn (K) es la clase de equivalencia de un vector no nulo u = (u0 , . . . , un ). Dicha
clase de equivalencia se notará indistintamente [u], [u0 : · · · : un ], o bien (u0 : · · · : un ).

Las letras P, Q, R, . . . denotarán usualmente puntos proyectivos. Notemos que para cual-
quier escalar α no nulo y para cualquier vector u = (u0 , . . . , un ) no nulo se tiene

[u] = [u0 : · · · : un ] = [αu0 : · · · : αun ] = [αu]

Además, si P = [u0 : · · · : un ] y Q = [v0 : · · · : vn ], entonces P = Q si y sólo si los vectores
(u0 , . . . , un ) y (v0 , . . . , vn ) son proporcionales.

Nota Existe una correspondencia biyectiva natural entre los siguientes conjuntos:

ρ : Pn (K) → {r ⊆ Kn+1 : r recta vectorial}

definida por ρ([u]) =< u >. Esta correspondencia biyectiva identifica los puntos de Pn (K)
con las rectas del espacio vectorial Kn+1 .




Página 1

, ALG2. José Martı́nez Suárez

Definición
La aplicación de paso al cociente

π : Kn+1 \{0} −→ Pn (K)
(a0 , . . . , an ) 7−→ [a0 : · · · : an ]

se denomina proyección natural de Kn+1 \{0} en el espacio proyectivo Pn (K).



1.1. Dependencia lineal proyectiva de puntos
Definición
Sea m ≥ 1 un entero y S = {P1 , . . . , Pm } ⊂ Pn (K). Diremos que S es un conjunto
proyectivamente linealmente independiente (resp. independiente) si, dados
v1 , . . . , vm ∈ Kn+1 cualesquiera verificando que π(vi ) = Pi , el conjunto {v1 , . . . , vm }
es linealmente dependiente (resp. independiente) en Kn+1 .

Si P ∈ Pn (K), diremos que P depende proyectivamente linealmente del conjunto S
si dados v, v1 , . . . , vm ∈ Kn+1 cualesquiera, verificando que π(v) = P, π(vi ) = Pi , el
vector v depende linealmente del conjunto {v1 , . . . , vm }.



1.2. El espacio afı́n como subespacio del espacio proyectivo
Consideremos la aplicación ϕ dada por
ϕ : An (K) −→ Pn (K)
(a1 , . . . , an ) 7−→ [1 : a1 : · · · : an ]
Se denota por Img(ϕ) la imagen de la aplicación anterior.
Proposición

La aplicación ϕ es biyectiva de An (K) en Img(ϕ).


Demostración. Sólo se necesita probar la inyectividad. Si [1 : a1 : · · · : an ] = [1 : b1 :
· · · : bn ] entonces existe un escalar α no nulo tal que (1, a1 , . . . , an ) = α(1, b1 , . . . , bn ). Esto
implica 1 = α · 1 = α. Por tanto, (a1 , . . . , an ) = (b1 , . . . , bn ).
Notemos H∞ = Pn (K)\Img(ϕ)
Proposición
Se tiene la igualdad

Img(ϕ) = {[a0 : · · · : an ] ∈ Pn (K) : a0 6= 0}

Equivalentemente, H∞ es el conjunto de puntos de Pn (K) cuya primera coordenada
es nula.


Página 2

, ALG2. José Martı́nez Suárez

Demostración. En efecto, si P = [a0 : · · · : an ] y a0 6= 0 entonces P = [1 : a1 /a0 : · · · :
an /a0 ] = ϕ(a1 /a0 , . . . , an /a0 ) ∈ Img(ϕ)
Notemos que H∞ se puede identificar con el espacio proyectivo Pn−1 (K) mediante la
aplicación biyectiva

H∞ −→ Pn−1 (K)
[0 : a1 : · · · : an ] 7−→ [a1 : · · · : an ]

Proposición
La aplicación biyectiva anterior preserva la dependencia e independencia lineal pro-
yectiva.

Podemos identificar, vı́a la aplicación inyectiva ϕ, el espacio afı́n An (K) con Img(ϕ) que
es el subconjunto complementario de H∞ en Pn (K), y esta identificación se usará a veces
sin mención explicita.

La aplicación de paso al cociente

(a1 , . . . , an ) ∈ Kn+1 \{0} 7−→ [a1 : · · · : an ] ∈ Pn−1 (K)

se denotará π∞ . Si no hay lugar a confusión, se denota también π∞ a la aplicación

(a1 , . . . , an ) ∈ Kn+1 \{0} 7−→ [0 : a1 : · · · : an ] ∈ H∞

El siguiente diagrama resume los espacios y las relaciones entre ellos:




1.3. Dependencia lineal afı́n y dependencia lineal proyectiva
La aplicación ϕ convierte la dependencia afı́n (resp. independencia afı́n) en dependencia
proyectiva (resp. independencia proyectiva). Concretamente se tiene la siguiente proposi-
ción:

Proposición

Sea T := {P1 , . . . , Pm } un subconjunto de An (K). El conjunto T es afı́nmente
independiente si y sólo si ϕ(T ) ⊂ Pn (K) es proyectivamente independiente. Además,
si P ∈ An (K), P depende afı́nmente de T si y sólo si ϕ(P ) depende proyectivamente
de ϕ(T ).




Página 3

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
josemartinez_0 Universidad de Sevilla
Follow You need to be logged in order to follow users or courses
Sold
48
Member since
6 year
Number of followers
34
Documents
25
Last sold
2 days ago

¡Hola! Tras haber obtenido el Diploma del Bachillerato Internacional, me dispongo a estudiar el Doble Grado en Ingeniería Informática y Matemáticas de la Universidad de Sevilla. En esta página subiré todos los apuntes, exámenes y resumenes escritos a ordenador que puedan ser de ayuda para todo aquel que esté estudiando alguna asignatura común a mí.

4.7

9 reviews

5
6
4
3
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these revision notes.

Didn't get what you expected? Choose another document

No problem! You can straightaway pick a different document that better suits what you're after.

Pay as you like, start learning straight away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and smashed it. It really can be that simple.”

Alisha Student

Frequently asked questions