100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Summary EC220 Notes on past paper questions

Puntuación
-
Vendido
3
Páginas
11
Subido en
18-09-2022
Escrito en
2021/2022

This note was produced when I attempted all past papers, so it was written based on the paper and the answers. It will help a lot when you are revising in a rush. Good luck!

Institución
Grado









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Desconocido
Grado

Información del documento

Subido en
18 de septiembre de 2022
Número de páginas
11
Escrito en
2021/2022
Tipo
Resumen

Temas

Vista previa del contenido

EC220 PAST PAPER NOTES

Q1: MT CONTENTS

DISCUSSING CAUSAL RELATIONSHIP
Would you interpret the effect as causal?
- Plausible story about confounders
- Reverse causality


Size of effect
- Compare 𝛽̂0 and 𝛽̂0 + 𝛽̂1 for a binary variable -> percentage difference in effect


OVB
- OVB = 𝛽 𝑆 − 𝛽 𝐿 = relationship of omitted in long × relationship between omitted and not-
omitted -> can infer relationship between omitted and not-omitted


Interaction
We would like to test whether pensioners are more likely to make the donation when they
receive the flyer
- Test coefficient on interaction


To include or not to include a variable
- To include:
o Confounder – even if not statistically significant
o Good control – explain the residuals – improve precision
o If not statistically significant, may still be able to make causal claim – maybe the
variation in this variable is not enough such that precision is not enough
- Not to include:
o Bad control which is a result of the outcome – would reintroduce selection bias
o Multicollinearity – would enlarge standard error and make the estimates volatile


Hardest causal question: 2021ST
Researchers would like to analyse whether consumers reacted to the disaster by reducing their
consumption of BP branded petrol during the oil spill. An observation is a particular petrol
station. Non-BP stations in BP zip codes are not used in the sample.
⇒ 𝐵𝑃𝑖 = 1 if the petrol station is in a BP zip code and sells BP oil
𝑃𝑟𝑖𝑐𝑒𝑖 = 𝛼 + 𝛽𝐵𝑃𝑖 + 𝑢𝑖
Define the treatment, the control group, the outcome, and the counterfactuals implicit in the
regression

, - Treatment is placed on control group to get the average treatment effect of interest
So treatment is on petrol stations
Treatment: the station sells BP petrol and therefore is exposed to potential
consequences of the oil spill
- Control group is the group of observations that are not treated
Control group: non-BP stations in non-BP zip codes that are not exposed to potential
consequences of the oil spill
- Counterfactuals: the average price of petrol sold at BP stations (the treated) over the
period, had the oil spill not happened
- Outcome: the average price of petrol sold at a station (treated + control) over the period


Balance check
- Run regression before the treatment to check whether there are any difference in the
outcomes before the treatment
- If there were statistically and economically significant differences, the concern would be
that there are systematic differences between the treatment and control groups, and
these differences might still explain any differences after the treatment
- If we cannot find any evidence for such differences, we are more confident that the
treatment and control groups are similar
- Discuss the significance -> conclude that the treatment and control groups are on average
likely to be similar



IV
Discuss the IV procedure
𝑒𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝑍 𝑜𝑛 𝑌
- Wald estimator: 𝛽̂ 𝐼𝑉 = 𝑒𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝑍 𝑜𝑛 𝑋

- The randomly assigned Z is assumed to affect Y only through X alone. That means the
effect of X is attributed exclusively to X, and we need to correct for the fact that some
offered the lottery doesn’t comply, while a few of those who were not initially offered
were treated. We adjust by rescaling the effect of Z, which will give us the effect of actual
treatment.
o The effect of Z on X = treated/lottery winner – treated/non-lottery winner


IV effect not significant, why?
- Reason 1: weak first stage
- Reason 2: IV assumptions may fail (discuss in depth)


Elasticity
ΔPrice
- = Δquantity
- Can be calculated from estimates
$21.29
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
arandommonkey London School of Economics
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
15
Miembro desde
3 año
Número de seguidores
13
Documentos
2
Última venta
1 año hace

5.0

1 reseñas

5
1
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes