Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Resume

Samenvatting Statistiek (FEB21007)

Note
-
Vendu
1
Pages
8
Publié le
06-09-2022
Écrit en
2019/2020

Uitgebreide samenvatting van Statistiek (econometrie EUR)

Établissement
Cours









Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Cours
Cours

Infos sur le Document

Publié le
6 septembre 2022
Nombre de pages
8
Écrit en
2019/2020
Type
Resume

Sujets

Aperçu du contenu

Week 1
Random sampling assumption
Independent and identically distributed (i.i.d) random variables 𝑋! , … , 𝑋" with pdf 𝑓(𝑥; 𝜃),
where the parameter 𝜃 is unknown. 𝜃 lies in some parameter space Ω
Type of means
Population mean: the mean that is a characteristic of the type of the distribution
!
Sample mean: the observed mean, calculated as 𝑋+ = " ∑"#$! 𝑋#
Variables/value
The unknown/unobserved are random variables in uppercase, 𝑋! , … , 𝑋" ~(𝑖. 𝑖. 𝑑) 𝑓(𝑥; 𝜃)
The data consists of observed values in lower case from the random process, 𝑥! , … , 𝑥"
Estimates/estimate
An estimator 𝑇 = 𝑡(𝑋! , … , 𝑋" ) is a function of the random variables 𝑋! , … , 𝑋" , so also a rv
An estimate 𝑇 = 𝑡(𝑥! , … , 𝑥" ) is the observed value of the estimator 𝑇 (the function value) based
on the observed values 𝑥! , … , 𝑥"
Method of moments estimator (MME)
! %
Population moments: 𝐸6𝑋% 7 = 𝜇%& (𝜃! , … , 𝜃' ) and sample moments: " ∑"#$! 𝑋# = 𝑀%&
Obtain an estimator of the unknown parameter 𝜽 = (𝜃! , … , 𝜃' ) by equating population
moments to sample moments
Maximum likelihood estimator (MLE)
Use the value of the unknown parameter 𝜽 = (𝜃! , … , 𝜃' ) that is most likely to have generated
the observed data as estimate. The likelihood function is defined as 𝐿(𝜽) = 𝑓(𝑋! , … , 𝑋" ; 𝜽)
For a random sample 𝑋! , … , 𝑋" we have 𝐿(𝜽) = ∏"#$! 𝑓(𝑋# ; 𝜽)
The MLE 𝜽= = 6𝜃>! , … , 𝜃>' 7 is the value of 𝜽 that maximizes 𝐿(𝜽)
Maximum of 𝐿(𝜽)
(
Compute MLE as the solution of () 𝐿(𝜽) = 0, but it is not always possible to compute
(
∏"#$! 𝑓(𝑋# ; 𝜽). Taking the logarithm of 𝐿(𝜽) gives the log-likelihood ln6𝐿(𝜽)7, then compute
()
( (!
()
ln6𝐿(𝜽)7 = 0 and check if ()! ln6𝐿(𝜽)7 < 0. If 𝐿(𝜽) is not differentiable, mathematical
reasoning is required
Invariance properties
If 𝜃> is the MLE of 𝜃 and if 𝑢(𝜃) is a function of 𝜃, then 𝑢6𝜃>7 is an MLE of 𝑢(𝜃)
= = 6𝜃>! , … , 𝜃>' 7 denotes the MLE of 𝜽 = (𝜃! , … , 𝜃' ), then the MLE of
If 𝜽
𝜏(𝜽) = 6𝜏! (𝜽), … , 𝜏* (𝜽)7 is 𝜏6𝜽 =7 = E𝜏! 6𝜽
=7, … , 𝜏* 6𝜽
= 7F for 1 ≤ 𝑟 ≤ 𝑘
Unbiased estimator
An estimator 𝑇 is said to be an unbiased estimator of 𝜏(𝜃) if 𝐸(𝑇) = 𝜏(𝜃) for all 𝜃 ∈ Ω.
Otherwise, we say that 𝑇 is a biased estimator of 𝜏(𝜃)
The bias is defined as 𝐵𝑖𝑎𝑠(𝑇) = 𝐸(𝑇) − 𝜏(𝜃). With an unbiased estimator, on average the true
value is estimated (an accurate estimator)
Mean squared error (MSE)
+
If 𝑇 is an estimator of 𝜏(𝜃), then the MSE of 𝑇 is given by 𝑀𝑆𝐸(𝑇) = 𝐸6𝑇 − 𝜏(𝜃)7
+
Moreover, 𝑀𝑆𝐸(𝑇) = 𝑉(𝑇) + 6𝐵𝑖𝑎𝑠(𝑇)7 , so if 𝑇 is unbiased, the 𝑀𝑆𝐸(𝑇) = 𝑉(𝑇)
Uniformly minimum variance unbiased estimator (UMVUE)
An estimator 𝑇 ∗ of 𝜏(𝜃) is called a UMVUE of 𝜏(𝜃) is 𝑇 ∗ is unbiased for 𝜏(𝜃) and for any other
unbiased estimator 𝑇 of 𝜏(𝜃), 𝑉(𝑇 ∗ ) ≤ 𝑉(𝑇) for all 𝜃 ∈ Ω
Cramer-Rao lower bound (CRLB)
!
-." ())1
If 𝑇 is an unbiased estimator of 𝜏(𝜃), then the CRLB is 𝑉(𝑇) ≥ # ! or
"23 4567(8;)):;
#$

, !
-." ())1
𝑉(𝑇) ≥ #!
. If an unbiased estimator equals the CRLB, it is a UMVUE
<"2= ! 4567(8;)):>
#$
Relative efficiency
The relative efficiency of an unbiased estimator 𝑇 of 𝜏(𝜃) to another unbiased estimator 𝑇 ∗ of
?(@ ∗ )
𝜏(𝜃) is given by 𝑟𝑒(𝑇, 𝑇 ∗ ) = ?(@)
Efficiency
An unbiased estimator 𝑇 ∗ of 𝜏(𝜃) is said to be efficient if 𝑟𝑒(𝑇, 𝑇 ∗ ) ≤ 1 for all unbiased
estimators 𝑇 of 𝜏(𝜃), and all 𝜃 ∈ Ω. The efficiency of an unbiased estimator 𝑇 of 𝜏(𝜃) is given by
𝑒(𝑇) = 𝑟𝑒(𝑇, 𝑇 ∗ ) if 𝑇 ∗ is an efficient estimator of 𝜏(𝜃).
An unbiased estimator that reaches the CRLB is efficient and an efficient estimator is UMVUE
Estimator with several unknown parameters
If 𝑋! , … , 𝑋" have pdf 𝑓(𝑥; 𝜃! , … , 𝜃' ), solve the system of equations with 𝑘 equations.
! !
For MME, the system is: 𝐸(𝑋! ) = " ∑"#$! 𝑋#! , … , 𝐸(𝑋 ' ) = " ∑"#$! 𝑋#'
For MML, the system is all the 𝑘 partial derivatives of the log-likelihood equal to 0

Week 2
Simple consistency
Let {𝑇" } be a sequence of estimators of 𝜏(𝜃). These estimators are said to be consistent
estimators of 𝜏(𝜃) if for every 𝜀 > 0, lim 𝑃(|𝑇" − 𝜏(𝜃)| < 𝜀) = 1 for every 𝜃 ∈ Ω
"→B
C
This is equivalent to lim 𝑃(|𝑇" − 𝜏(𝜃)| > 𝜀) = 0. The notation is 𝑇" → 𝜏(𝜃)
"→B
A consistent estimator converges in probability to the true value
MSE consistency
If {𝑇" } be a sequence of estimators of 𝜏(𝜃), then they are called MSE consistent if
+
lim 𝐸6𝑇" − 𝜏(𝜃)7 = 0 for every 𝜃 ∈ Ω. MSE consistency ⟹ (simple) consistency
"→B
Asymptotically unbiased estimator
A sequence of estimators {𝑇" } is said to be asymptotically unbiased for 𝜏(𝜃) if lim 𝐸(𝑇" ) = 𝜏(𝜃)
"→B
for all 𝜃 ∈ Ω. Estimator is MSE consistent ⟺ it is asymptotically unbiased and lim 𝑉( 𝑇" ) = 0
"→B
Law of Large Numbers (LLN)
If 𝑋! , … , 𝑋" is a random sample from a distribution with finite mean and variance, then
! C
𝑋+" = " ∑"#$! 𝑋# → 𝐸(𝑋)
Continuous mapping theorem
C C
If 𝑌" → 𝑐, then for any function 𝑔(𝑦) that is continuous at 𝑐, 𝑔(𝑌" ) → 𝑔(𝑐)
This is also valid for 𝑘-dimensional vectors
Convergence in probability results theorem
C C
If 𝑋" and 𝑌" are two sequences of random variables such that 𝑋" → 𝑐 and 𝑌" → 𝑑, then:
C
- 𝑎𝑋" + 𝑏𝑌" → 𝑎𝑐 + 𝑏𝑑
C
- 𝑋" 𝑌" → 𝑐𝑑
C
- 𝑋" /𝑐 → 1 for 𝑐 ≠ 0
C
- 1/𝑋" → 1/𝑐 if 𝑐 ≠ 0
C
- g𝑋" → √𝑐 if 𝑐 > 0
$8.48
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien


Document également disponible en groupe

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
LeonVerweij Cals College Nieuwegein (Nieuwegein)
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
33
Membre depuis
7 année
Nombre de followers
19
Documents
28
Dernière vente
5 mois de cela

2.0

1 revues

5
0
4
0
3
0
2
1
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions