100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary Probability Theory (FEB21005X)

Rating
-
Sold
-
Pages
12
Uploaded on
04-09-2022
Written in
2019/2020

Comprehensive summary of Probability Theory (econometrics EUR)

Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
September 4, 2022
Number of pages
12
Written in
2019/2020
Type
Summary

Subjects

Content preview

Week 1
Discrete sample space
Finite or countably infinite number of outcomes
Continuous sample space
Uncountable number of outcomes
Axioms of probability
1. 𝑃(𝐴) ≥ 0 for any event A
2. 𝑃(𝑆) = 1
3. For any countable collection of disjoint events 𝑃(⋃" "
!#$ 𝐴! ) = ∑!#$ 𝑃(𝐴! )
Conditional probability
The conditional probability of an event A, given the event B, is defined by
%('∩))
𝑃(𝐴|𝐵) = %()) if 𝑃(𝐵) > 0
Bayes’ rule
Let 𝐴$ , … , 𝐴+ be disjoint and exhaustive events and assume 𝑃(𝐵) > 0, then
%()|'! )%('! )
𝑃2𝐴, 3𝐵4 = ∑#
"$% %()|'" )%('" )
Independence of A and B
Two events A and B are called independent events if 𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴)𝑃(𝐵)
The definitions 𝑃(𝐴 | 𝐵) = 𝑃(𝐴) and 𝑃(𝐵 | 𝐴) = 𝑃(𝐵) are equivalent
Mutually independent
Events 𝐴$ , … , 𝐴+ are mutually independent if for every 𝑘 = 2, 3, … , 𝑛 and for every subset
{𝑖$ , … , 𝑖/ } of {1, 2, … , 𝑛} 𝑃 =⋂/,#$ 𝐴!! ? = ∏/,#$ 𝑃 =𝐴!! ?
Random variable (rv)
A random variable is a function: 𝑆 → ℝ, we use capital letters to denote a rv
Discrete random variable
The set of possible values for the random variable is finite or countably infinite
The probability distribution of a discrete random variable is completely described by the
probability density function (pdf), defined by
𝑝(𝑥) = 𝑃(𝑋 = 𝑥) = 𝑃({𝑠 ∈ 𝑆: 𝑋(𝑠) = 𝑥}), for every number 𝑥
A function 𝑝(𝑥) is a discrete pdf if and only if 𝑝(𝑥! ) ≥ 0, ∀𝑥! en ∑122 3" 𝑝(𝑥! ) = 1
The cumulative distribution function (cdf) of a discrete rv is the function
𝐹(𝑥) = 𝑃(𝑥 ≤ 𝑥) = ∑4:463 𝑝(𝑦)
A discrete function is continuous from the left, so the probability that 𝑥 is between 𝑎 and 𝑏
is equal to 𝑃(𝑎 < 𝑥 ≤ 𝑏)
Continuous random variable
The set of all possible values for the random variable is uncountably infinite
The cdf of a continuous random variable X is a continuous function
A probability density function (pdf) of a continuous random variable X is a function 𝑓 such
3
that 𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) = ∫7" 𝑓(𝑠)𝑑𝑠
If X is a continuous random variable with probability density function 𝑓 and cumulative
distribution function 𝐹, then at every x where 𝐹 8 (𝑥) exists, 𝐹′(𝑥) = 𝑓(𝑥)
Calculation probability continuous rv
9
For any 𝑎 ≤ 𝑏, 𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = ∫1 𝑓(𝑠)𝑑𝑠 = 𝐹(𝑏) − 𝐹(𝑎)
Writing down pdf
All distributions, except for the normal distribution, have a 0 part, so the pdf will be
…, 𝑓𝑜𝑟 …
𝑓(𝑥) = U
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒


1

, Expectation
If X is a random variable with pdf 𝑓(𝑥) and 𝑢(𝑥) is a real-valued function whose domain
includes the possible values of X, then
- 𝐸2𝑢(𝑋)4 = ∑3 𝑢(𝑥)𝑓(𝑥) if X is discrete
"
- 𝐸2𝑢(𝑋)4 = ∫7" 𝑢(𝑥)𝑓(𝑥)𝑑𝑥 if X is continuous
To calculate the mean/expectation of X, we take 𝑢(𝑥) = 𝑥
Properties of expectation
- 𝐸(𝑐) = 𝑐
- 𝐸(𝑎𝑋 + 𝑏) = 𝑎𝐸(𝑋) + 𝑏
Variance
:
The variance of a random variable X is given by 𝑉(𝑋) = 𝐸 a2𝑋 − 𝐸(𝑋)4 b
Properties of variance
- 𝑉(𝑋) ≥ 0
- 𝑉(𝑎𝑋) = 𝑎: 𝑉(𝑋)
- 𝑉(𝑋 + 𝑏) = 𝑉(𝑋)
- 𝑉(𝑎𝑋 + 𝐵) = 𝑎: 𝑉(𝑋)
:
- 𝑉(𝑋) = 𝐸(𝑋 : ) − 2𝐸(𝑋)4
(Central) moment
The 𝑘;< moment 𝜇8 / of a random variable X is 𝐸(𝑋 / )
The 𝑘;< central moment 𝜇/ of a random variable X is 𝐸((𝑋 − 𝜇)/ )
=& ='
skewness = >& (measure of asymmetry) and kurtosis = >' (measure of fatness of tails)
Markov’s inequality
For a random variable that only takes positive values, it holds that, for every 𝑐 > 0,
?(3)
𝑃(𝑋 ≥ 𝑐) ≤ @
Chebyshev inequality
For every random variable X with expected value 𝜇 and variance 𝜎 : > 0 and 𝑘 > 0 it holds
>( >(
that 𝑃(|𝑋 − 𝜇| ≥ 𝑐) ≤ @ ( ⇔ 𝑃(|𝑋 − 𝜇| ≤ 𝑐) ≥ 1 − @ ( , or with 𝑐 = 𝑘𝜎
At least 0% of the realizations lies within σ of μ
At least 75% of the realizations lies within 2σ of μ
At least 89% of the realizations lies within 3σ of μ

Week 2
Moment generating function
If X is a random variable, then the expected value 𝑀A (𝑡) = 𝐸(𝑒 ;A ) is called the Moment
Generating Function (MGF) of X is this expected value exists for all values of t in some
interval of the form |t| < h for some h > 0. It holds that 𝑀A (0) = 1
If X has MGF 𝑀A (𝑡) then 𝑌 = 𝑎𝑋 + 𝑏 has MGF 𝑀B (𝑡) = 𝑒 9; 𝑀A (𝑎𝑡)
MGF and E(X)
(C)
If the MGF of X exists, then 𝐸(𝑋 C ) = 𝑀A (0) for all 𝑟 = 1, 2, … and
?(A ) ); )
𝑀A (𝑡) = 1 + ∑"
C#$ C!
PDF, CDF and MGF
3
PDF à CDF: 𝐹(𝑥) = ∫7" 𝑓(𝑦)𝑑𝑦
E
CDF à PDF: 𝑓(𝑥) = E3 𝐹(𝑥)
"
PDF à MGF: 𝐸(𝑒 ;A ) = ∫7" 𝑒 ;3 𝑓(𝑥)𝑑𝑥
MGF à PDF: recognize

2
$8.48
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached


Also available in package deal

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
LeonVerweij Cals College Nieuwegein (Nieuwegein)
Follow You need to be logged in order to follow users or courses
Sold
33
Member since
7 year
Number of followers
19
Documents
28
Last sold
5 months ago

2.0

1 reviews

5
0
4
0
3
0
2
1
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions