100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Samenvatting Analyse (FEB21021)

Rating
-
Sold
1
Pages
13
Uploaded on
04-09-2022
Written in
2019/2020

Uitgebreide samenvatting van Analyse (econometrie EUR)

Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
September 4, 2022
Number of pages
13
Written in
2019/2020
Type
Summary

Subjects

Content preview

Week 1
Functie
f : A → B zodat 𝑎 ↦ 𝑓(𝑎) is gegeven door het domein A, co-domein B en de regel
𝑎 ↦ 𝑓(𝑎)
Elementaire functies
𝑥 ↦ 𝑥 ! , 𝑣𝑜𝑜𝑟 𝑝 ∈ ℤ
𝑥 ↦ 𝑎 " , 𝑣𝑜𝑜𝑟 𝑎 > 0
𝑥 ↦ sin(𝑥) , 𝑥 ↦ cos (𝑥)
Nieuwe functies opstellen voor een gegeven f en g
- Som f + g
- Scalaire vermenigvuldiging c x f voor een constante c ∈ ℝ
- Product f x g
- Compositie f ∘ g
- Inverse f-1 (als f inverteerbaar is)
Compositie
2 functies 𝑓: 𝐴 → 𝐵 en 𝑔: 𝐶 → 𝐷, neem aan dat 𝐷 ⊆ 𝐴
De compositie 𝑓 ∘ 𝑔: 𝐶 → 𝐵 is gegeven door (𝑓 ∘ 𝑔)(𝑥) = 𝑓A𝑔(𝑥)B voor alle 𝑥 ∈ ℂ
Identiteitsfunctie
𝑖𝑑# : 𝐴 → 𝐴, 𝑎 ↦ 𝑎
Inverse functie
2 functies 𝑓: 𝐴 → 𝐵 en 𝑔: 𝐵 → 𝐴
f en g zijn elkaar inverse functies als 𝑓 ∘ 𝑔 = 𝑖𝑑$ en 𝑔 ∘ 𝑓 = 𝑖𝑑#
Dat betekent 𝑓A𝑔(𝑏)B = 𝑏, ∀𝑏 ∈ 𝐵 en 𝑔A𝑓(𝑎)B = 𝑎, ∀𝑎 ∈ 𝐴
Als een functie inverteerbaar is, dan is de inverse uniek
Injectieve functie
𝑓: 𝐴 → 𝐵 is injectief als voor " x1, x2 Î A zodat x1 ¹ x2 Þ f(x1) ¹ f(x2)
Û f is injectief als voor " x1, x2 Î A zodat f(x1) = f(x2) Þ x1 = x2
Surjectieve functie
𝑓: 𝐴 → 𝐵 is surjectief als " y Î B, $ x Î A zodat f(x) = y
Bijectieve functie
f is bijectief als het injectief én surjectief is
Bijectieve en inverteerbare functie
𝑓: 𝐴 → 𝐵, dan is f inverteerbaar Û f is bijectief
Monotone functie
𝑓: 𝐴 → 𝐵 is strikt stijgend als voor elke 𝑥% , 𝑥& ∈ 𝐴 𝑚𝑒𝑡 𝑥% < 𝑥& geldt dat 𝑓(𝑥% ) < 𝑓(𝑥& )
𝑓: 𝐴 → 𝐵 is strikt dalend als voor elke 𝑥% , 𝑥& ∈ 𝐴 𝑚𝑒𝑡 𝑥% < 𝑥& geldt dat 𝑓(𝑥% ) > 𝑓(𝑥& )
𝑓 is strikt monotoon als het strikt stijgend of strikt dalend is
Symmetrische functie
f is even als 𝑓(𝑥) = 𝑓(−𝑥) voor alle 𝑥 ∈ 𝐴
f is oneven als −𝑓(𝑥) = 𝑓(−𝑥) voor alle 𝑥 ∈ 𝐴
Strikt monotoon en injectief
Als f strikt monotoon is, dan is f injectief
Definitie limiet
𝑓: 𝐴 → 𝐵 met 𝐴 ∈ ℝ open en 𝐵 ∈ ℝ, dan lim 𝑓(𝑥) = 𝐿 als voor elke 𝜀 > 0, er een 𝛿 > 0
"→(
bestaat zodat voor elke 𝑥 ∈ 𝐴, als 0 < |𝑥 − 𝑎| < 𝛿, impliceert dat |𝑓(𝑥) − 𝐿| < 𝜀
Limiet bij oneindigheid
𝑓: 𝐴 → 𝐵 met 𝐴 ∈ ℝ en 𝐵 ∈ ℝ, dan lim 𝑓(𝑥) = 𝐿 als voor elke 𝜀 > 0, er een M > 0
"→)
bestaat, zodat x > M impliceert dat |𝑓(𝑥) − 𝐿| < 𝜀

, Oneindig limiet
𝑓: 𝐴 → 𝐵 met 𝐴 ∈ ℝ open en 𝐵 ∈ ℝ, dan lim 𝑓(𝑥) = ∞ als voor elke 𝑀 > 0, er een 𝛿 > 0
"→(
bestaat, zodat 0 < |𝑥 − 𝑎| < 𝛿 impliceert dat 𝑓(𝑥) > 𝑀
Somregel limieten
f en g 2 functies van A naar B, als lim 𝑓(𝑥) = 𝐿 en lim 𝑔(𝑥) = 𝑀 dan
"→( "→(
lim (𝑓(𝑥) + 𝑔(𝑥)) = 𝐿 + 𝑀
"→(
Limietregels
Als lim 𝑓(𝑥) = 𝐿 en lim 𝑔(𝑥) = 𝑀 dan
"→( "→(
- lim (𝑓(𝑥) − 𝑔(𝑥)) = 𝐿 − 𝑀
"→(
- lim (𝑐 ∗ 𝑓(𝑥)) = 𝑐 ∗ 𝐿 voor elke 𝑐 ∈ ℝ
"→(
- lim (𝑓(𝑥) ∗ 𝑔(𝑥)) = 𝐿 ∗ 𝑀
"→(
*(") .
- lim = / als 𝑀 ≠ 0
"→( -(")
Limiet ongelijkheid
f en g 2 functies van A naar B, neem aan dat 𝑓(𝑥) ≤ 𝑔(𝑥) voor alle 𝑥 ∈ 𝐴 en dat
lim 𝑓(𝑥) = 𝐿 en lim 𝑔(𝑥) = 𝑀, dan 𝐿 ≤ 𝑀
"→( "→(
Insluitstelling (squeeze theorem)
f, g en h functies van A naar B, neem aan dat 𝑓(𝑥) ≤ 𝑔(𝑥) ≤ ℎ(𝑥) voor alle 𝑥 ∈ 𝐴 en dat
lim 𝑓(𝑥) = 𝐿 en lim ℎ(𝑥) = 𝐿, dan lim 𝑔(𝑥) = 𝐿
"→( "→( "→(
Continuïteit
Een functie f is continu op een punt 𝑎 ∈ 𝐴 als lim 𝑓(𝑥) = 𝑓(𝑎)
"→(
Een functie is continu als het continu is op elk punt
Discontinuïteit
Als een functie niet continu is, dan is het 1 van de 3 vormen van discontinuïteit:
- Ophefbare discontinuïteit (gat in de grafiek)
- Essentiële discontinuïteit (oneindig)
- Sprong discontinuïteit (sprong van een punt naar een ander punt)
Regels continuïteit
Als f en g continu zijn, dan zijn f + g, f * g, c * f en f ◦ g ook continu, is f / g continu op x als
𝑔(𝑥) ≠ 0, en als f inverteerbaar is, dan is 𝑓 0% continu
De functies 𝑥 ! , 𝑎 " , sin(𝑥) en cos (𝑥) zijn continu op hun domein
Limieten en functiesymbolen verwisseld
Als h continu is op b en lim 𝑘(𝑥) = 𝑏, dan lim ℎA𝑘(𝑥)B = ℎ \lim 𝑘(𝑥)] = ℎ(𝑏)
"→( "→( "→(
Tussenwaarde stelling
Als f : A à B continu is op [𝑎, 𝑏], 𝑎, 𝑏 ∈ 𝐴 en 𝑓(𝑎) ≠ 𝑓(𝑏), dan ∀𝑁 zodat 𝑓(𝑎) < 𝑁 < 𝑓(𝑏)
of 𝑓(𝑏) < 𝑁 < 𝑓(𝑎), ∃𝑐 ∈ (𝑎, 𝑏) zodat 𝑓(𝑐) = 𝑁

Week 2
Afgeleide van een functie
*(")0*(()
𝑓: 𝐴 → 𝐵, dan is de functie differentieerbaar op 𝑎 ∈ 𝐴 als lim "0( bestaat
"→(
In dat geval is de afgeleide van f de limiet en is 𝑓 1 (𝑎)
f is differentieerbaar als f op elke 𝑎 ∈ 𝐴 differentieerbaar is
*((42)0*(()
De afgeleide kan ook verkregen worden met lim 2
(x = a + h)
2→3
$8.45
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached


Also available in package deal

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
LeonVerweij Cals College Nieuwegein (Nieuwegein)
Follow You need to be logged in order to follow users or courses
Sold
33
Member since
7 year
Number of followers
19
Documents
28
Last sold
4 months ago

2.0

1 reviews

5
0
4
0
3
0
2
1
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions