Algemene natuurkunde
Hoofdstuk 13: Fluïda
13.1 Hydrostatische druk
Druk is kracht per oppervlakte-eenheid
𝐹
𝑃=
𝐴
Hydrostatische druk: druk in een stilstaande vloeistof, deze werkt in alle richtingen en staat loodrecht op het
oppervlak.
De druk op diepte ℎ is het gevolg van het gewicht (en de lucht) erboven. Hieruit volgt dat:
𝐹 = 𝜌𝐴ℎ𝑔 en 𝑃 = 𝜌𝑔ℎ
Krachtenevenwicht:
𝑃𝐴 − (𝑃 + 𝑑𝑃)𝐴 − 𝑚𝑔 = 0
𝑃𝐴 − 𝑃𝐴 − 𝑑𝑃𝐴 − 𝜌(𝑦). 𝑉. 𝑔 = 0
−𝑑𝑃𝐴 − 𝜌(𝑦). 𝐴. 𝑑𝑦. 𝑔 = 0
𝑃2 𝑦2
∫ 𝑑𝑃 = −𝑔 ∫ 𝜌(𝑦)𝑑𝑦
𝑃1 𝑦1
Exponentiële drukverandering in de atmosfeer:
𝜌(𝑦) 𝑃(𝑦)
𝑑𝑃 = −𝑔 𝜌(𝑦)𝑑𝑦 en bovendien: =
𝜌0 𝑃0
𝜌0
𝑑𝑃 = −𝑔𝑃 ( 𝑃 ) 𝑑𝑦
0
𝑑𝑃 𝜌
= −𝑔 ( 𝑃0) 𝑑𝑦
𝑃 0
𝜌
(−𝑔𝑃0 )𝑦
𝑃 = 𝑃0 𝑒 0
13.2 Principe van Pascal
De druk op gelijke hoogte in dezelfde vloeistof is gelijk
𝐴𝑜𝑢𝑡
𝐹𝑜𝑢𝑡 = 𝐹
𝐴𝑖𝑛 𝑖𝑛
13.3 Wet van Archimedes
Elk ondergedompeld voorwerp ondervindt een opwaartse kracht gelijk aan het gewicht van de verplaatste
vloeistof.
𝐹𝐵 = 𝑚𝐹 𝑔 = 𝜌. 𝐴. ∆ℎ. 𝑔
,13.4 Continuïteitsvergelijking
∆𝑚1 𝜌 ∆𝑉 𝜌 𝐴 ∆𝑙
Massadebiet: = 1∆𝑡 1 = 1 ∆𝑡1 1 = 𝜌1 𝐴1 𝑣1
∆𝑡
→ Av = 𝑐 𝑡𝑒 continuïteit = behoud van materie, geldig in elk fluïdum
13.5 Wet van Bernoulli
𝑊𝑡𝑜𝑡 = 𝐹1 ∆𝑙1 − 𝐹2 ∆𝑙2 − 𝐺. (𝑦2 − 𝑦1 )
𝑊1 = 𝐹1 ∆𝑙1 = 𝑃1 𝐴1 ∆𝑙1 (Arbeid)
𝑊2 = −𝐹2 ∆𝑙2 = −𝑃2 𝐴2 ∆𝑙2 (Kracht op punt 2 is tegengestelde beweging)
𝑊3 = −𝑚𝑔(𝑦2 − 𝑦1 ) (Beweging is tegen zwaartekracht)
𝑊 = 𝑃1 𝐴1 ∆𝑙1 − 𝑃2 𝐴2 ∆𝑙2 − 𝑚𝑔(𝑦2 − 𝑦1 )
1
𝑊 = 2 𝑚(𝑣22 − 𝑣12 ) en 𝑚 = 𝜌𝑉 en 𝐴1 ∆𝑙1 = 𝑉 = 𝐴2 ∆𝑙2
1
𝑃1 𝐴1 ∆𝑙1 − 𝑃2 𝐴2 ∆𝑙2 − 𝑚𝑔(𝑦2 − 𝑦1 ) = 𝑚(𝑣22 − 𝑣12 )
2
1
𝑃1 − 𝑃2 − 𝜌𝑔(𝑦2 − 𝑦1 ) = 𝜌(𝑣22 − 𝑣12 )
2
1
𝑃 + 𝜌𝑣 2 + 𝜌𝑔𝑦 = 𝑐𝑡𝑒.
2
13.6 Viscositeit
Viscositeit: inwendige wrijving in een fluïdum in beweging met 𝑙 de afstand tussen de platen (of diameter van
de buis)
𝑣
𝐹=𝜂𝐴
𝑙
13.7 Wet van Poiseuille
Om een vloeistof te laten stromen moet er een drukverschil aanwezig zijn tussen de uiteinden van de buis.
Beschouw een buis met straal 𝑅 en lengte 𝑙, een een cilindrisch vloeistofelement erbinnen, met straal 𝑟. Het
drukverschil tussen de uiteinden is ∆𝑃 = 𝑃1 − 𝑃2.
De uitgeoefende kracht op de vloeistof is
𝐹𝑢𝑖𝑡 = (𝑃1 − 𝑃2 ). 𝐴 = ∆𝑃𝜋𝑟 2
De wrijvingskracht, als gevolg van de viscositeit van de vloeistof is
𝑑𝑣
𝐹𝑣𝑖𝑠𝑐 = 𝜂(2𝜋𝑟𝑙)
𝑑𝑟
,Bij evenwicht, is 𝐹𝑢𝑖𝑡 + 𝐹𝑣𝑖𝑠𝑐 = 0
𝑑𝑣
→ ∆𝑃𝜋𝑟 2 = −𝜂(2𝜋𝑟𝑙)
𝑑𝑟
𝑑𝑣 ∆𝑃
→ =− 𝑟
𝑑𝑟 2𝜂𝑙
We nemen aan dat 𝑣 = 0 ter plaatse van 𝑟 = 𝑅 (als gevolg van de adhesiekracht aan het buis/vloeistof
grensvlak)
0
∆𝑃 𝑅
∫ 𝑑𝑣 ′ = − ∫ 𝑟′𝑑𝑟′
𝑣 2𝜂𝑙 𝑟
∆𝑃 2
→ 𝑣(𝑟) = (𝑅 − 𝑟 2 )
4𝜂𝑙
Het volumedebiet is 𝑄 = 𝐴𝑣 = 𝑐𝑡𝑒. voor uniforme snelheid. Voor niet uniforme snelheid, is Q gegeven door
∆𝑃 𝑅 2 𝜋𝑅4 (𝑃1 − 𝑃2 )
𝑄= ∫ (𝑅 − 𝑟 2 )2𝜋𝑟 𝑑𝑟 =
4𝜂𝑙 0 8𝜂𝑙
, Hoofdstuk 14: Trillingen
14.1 Harmonische trillingen
Harmonische trilling:
Kracht 𝐹 uitgeoefend door een veer op een voorwerp:
𝐹 = −𝑘𝑥 (Wet van Hooke)
𝐹 = 𝑚𝑎 (Wet van Newton)
𝑑 2𝑥
⇒ 𝑚 𝑑𝑡 2 + 𝑘𝑥 = 0, 2e orde diffvgl, voorstel: 𝑥(𝑡) = 𝑒 𝜆𝑡 , 𝜆 complex
• Positie: 𝑥(𝑡) = 𝐴 cos(𝜔𝑡 + 𝜙)
• Snelheid: 𝑣(𝑡) = −𝐴𝜔 sin(𝜔𝑡 + 𝜙)
• Versnelling: 𝑎(𝑡) = −𝐴𝜔2 cos(𝜔𝑡 + 𝜙)
𝑘
Met eigen cirkelfrequentie: 𝜔 = √
𝑚
14.2 Energie (afleiding snelheid in functie van de 𝑥(𝑡))
1
𝐸𝑘 = 2 𝑚𝑣 2 (𝑡)
1
𝐸𝑝 = 𝑘 ∫ 𝑥 𝑑𝑥 = 𝑘 𝑥 2 (𝑡) (Algemene vorm van arbeid voor niet-constante kracht)
2
1 1
𝐸𝑡𝑜𝑡 = 𝐸𝑘 + 𝐸𝑝 = 𝑘 𝑥 2 (𝑡) + 𝑚𝑣 2 (𝑡)
2 2
𝑘 2 2 (𝜔𝑡)
𝑚. 𝐴2 . 𝜔2 𝐴2
= 𝐴 cos + . sin2 (𝜔𝑡) = (𝑘. cos2 (𝜔𝑡) + 𝑚. 𝜔2 . sin2 (𝜔𝑡))
2 2 2
2
𝐴2 𝑘 𝐴2
= (𝑘. cos2 (𝜔𝑡) + 𝑚. (√ ) . sin2 (𝜔𝑡)) = .𝑘
2 𝑚 2
𝑣 = 𝐴. 𝜔. sin(𝜔𝑡) → 𝑣𝑚𝑎𝑥 = ± 𝐴. 𝜔
𝐴2 1 1
𝐸𝑡𝑜𝑡 = . 𝑘 = 𝑘 𝑥 2 (𝑡) + 𝑚𝑣 2 (𝑡)
2 2 2
𝐴2 . 𝑘 − 𝑘. 𝑥 2 𝑘 𝑥2
→ 𝑣 = ±√ = ± √ . (𝐴2 − 𝑥 2 ) = ±√𝜔 2 . 𝐴2 − 𝜔 2 . 𝑥 2 = ±𝑣𝑚𝑎𝑥 √1 − 2
𝑚 𝑚 𝐴
Hoofdstuk 13: Fluïda
13.1 Hydrostatische druk
Druk is kracht per oppervlakte-eenheid
𝐹
𝑃=
𝐴
Hydrostatische druk: druk in een stilstaande vloeistof, deze werkt in alle richtingen en staat loodrecht op het
oppervlak.
De druk op diepte ℎ is het gevolg van het gewicht (en de lucht) erboven. Hieruit volgt dat:
𝐹 = 𝜌𝐴ℎ𝑔 en 𝑃 = 𝜌𝑔ℎ
Krachtenevenwicht:
𝑃𝐴 − (𝑃 + 𝑑𝑃)𝐴 − 𝑚𝑔 = 0
𝑃𝐴 − 𝑃𝐴 − 𝑑𝑃𝐴 − 𝜌(𝑦). 𝑉. 𝑔 = 0
−𝑑𝑃𝐴 − 𝜌(𝑦). 𝐴. 𝑑𝑦. 𝑔 = 0
𝑃2 𝑦2
∫ 𝑑𝑃 = −𝑔 ∫ 𝜌(𝑦)𝑑𝑦
𝑃1 𝑦1
Exponentiële drukverandering in de atmosfeer:
𝜌(𝑦) 𝑃(𝑦)
𝑑𝑃 = −𝑔 𝜌(𝑦)𝑑𝑦 en bovendien: =
𝜌0 𝑃0
𝜌0
𝑑𝑃 = −𝑔𝑃 ( 𝑃 ) 𝑑𝑦
0
𝑑𝑃 𝜌
= −𝑔 ( 𝑃0) 𝑑𝑦
𝑃 0
𝜌
(−𝑔𝑃0 )𝑦
𝑃 = 𝑃0 𝑒 0
13.2 Principe van Pascal
De druk op gelijke hoogte in dezelfde vloeistof is gelijk
𝐴𝑜𝑢𝑡
𝐹𝑜𝑢𝑡 = 𝐹
𝐴𝑖𝑛 𝑖𝑛
13.3 Wet van Archimedes
Elk ondergedompeld voorwerp ondervindt een opwaartse kracht gelijk aan het gewicht van de verplaatste
vloeistof.
𝐹𝐵 = 𝑚𝐹 𝑔 = 𝜌. 𝐴. ∆ℎ. 𝑔
,13.4 Continuïteitsvergelijking
∆𝑚1 𝜌 ∆𝑉 𝜌 𝐴 ∆𝑙
Massadebiet: = 1∆𝑡 1 = 1 ∆𝑡1 1 = 𝜌1 𝐴1 𝑣1
∆𝑡
→ Av = 𝑐 𝑡𝑒 continuïteit = behoud van materie, geldig in elk fluïdum
13.5 Wet van Bernoulli
𝑊𝑡𝑜𝑡 = 𝐹1 ∆𝑙1 − 𝐹2 ∆𝑙2 − 𝐺. (𝑦2 − 𝑦1 )
𝑊1 = 𝐹1 ∆𝑙1 = 𝑃1 𝐴1 ∆𝑙1 (Arbeid)
𝑊2 = −𝐹2 ∆𝑙2 = −𝑃2 𝐴2 ∆𝑙2 (Kracht op punt 2 is tegengestelde beweging)
𝑊3 = −𝑚𝑔(𝑦2 − 𝑦1 ) (Beweging is tegen zwaartekracht)
𝑊 = 𝑃1 𝐴1 ∆𝑙1 − 𝑃2 𝐴2 ∆𝑙2 − 𝑚𝑔(𝑦2 − 𝑦1 )
1
𝑊 = 2 𝑚(𝑣22 − 𝑣12 ) en 𝑚 = 𝜌𝑉 en 𝐴1 ∆𝑙1 = 𝑉 = 𝐴2 ∆𝑙2
1
𝑃1 𝐴1 ∆𝑙1 − 𝑃2 𝐴2 ∆𝑙2 − 𝑚𝑔(𝑦2 − 𝑦1 ) = 𝑚(𝑣22 − 𝑣12 )
2
1
𝑃1 − 𝑃2 − 𝜌𝑔(𝑦2 − 𝑦1 ) = 𝜌(𝑣22 − 𝑣12 )
2
1
𝑃 + 𝜌𝑣 2 + 𝜌𝑔𝑦 = 𝑐𝑡𝑒.
2
13.6 Viscositeit
Viscositeit: inwendige wrijving in een fluïdum in beweging met 𝑙 de afstand tussen de platen (of diameter van
de buis)
𝑣
𝐹=𝜂𝐴
𝑙
13.7 Wet van Poiseuille
Om een vloeistof te laten stromen moet er een drukverschil aanwezig zijn tussen de uiteinden van de buis.
Beschouw een buis met straal 𝑅 en lengte 𝑙, een een cilindrisch vloeistofelement erbinnen, met straal 𝑟. Het
drukverschil tussen de uiteinden is ∆𝑃 = 𝑃1 − 𝑃2.
De uitgeoefende kracht op de vloeistof is
𝐹𝑢𝑖𝑡 = (𝑃1 − 𝑃2 ). 𝐴 = ∆𝑃𝜋𝑟 2
De wrijvingskracht, als gevolg van de viscositeit van de vloeistof is
𝑑𝑣
𝐹𝑣𝑖𝑠𝑐 = 𝜂(2𝜋𝑟𝑙)
𝑑𝑟
,Bij evenwicht, is 𝐹𝑢𝑖𝑡 + 𝐹𝑣𝑖𝑠𝑐 = 0
𝑑𝑣
→ ∆𝑃𝜋𝑟 2 = −𝜂(2𝜋𝑟𝑙)
𝑑𝑟
𝑑𝑣 ∆𝑃
→ =− 𝑟
𝑑𝑟 2𝜂𝑙
We nemen aan dat 𝑣 = 0 ter plaatse van 𝑟 = 𝑅 (als gevolg van de adhesiekracht aan het buis/vloeistof
grensvlak)
0
∆𝑃 𝑅
∫ 𝑑𝑣 ′ = − ∫ 𝑟′𝑑𝑟′
𝑣 2𝜂𝑙 𝑟
∆𝑃 2
→ 𝑣(𝑟) = (𝑅 − 𝑟 2 )
4𝜂𝑙
Het volumedebiet is 𝑄 = 𝐴𝑣 = 𝑐𝑡𝑒. voor uniforme snelheid. Voor niet uniforme snelheid, is Q gegeven door
∆𝑃 𝑅 2 𝜋𝑅4 (𝑃1 − 𝑃2 )
𝑄= ∫ (𝑅 − 𝑟 2 )2𝜋𝑟 𝑑𝑟 =
4𝜂𝑙 0 8𝜂𝑙
, Hoofdstuk 14: Trillingen
14.1 Harmonische trillingen
Harmonische trilling:
Kracht 𝐹 uitgeoefend door een veer op een voorwerp:
𝐹 = −𝑘𝑥 (Wet van Hooke)
𝐹 = 𝑚𝑎 (Wet van Newton)
𝑑 2𝑥
⇒ 𝑚 𝑑𝑡 2 + 𝑘𝑥 = 0, 2e orde diffvgl, voorstel: 𝑥(𝑡) = 𝑒 𝜆𝑡 , 𝜆 complex
• Positie: 𝑥(𝑡) = 𝐴 cos(𝜔𝑡 + 𝜙)
• Snelheid: 𝑣(𝑡) = −𝐴𝜔 sin(𝜔𝑡 + 𝜙)
• Versnelling: 𝑎(𝑡) = −𝐴𝜔2 cos(𝜔𝑡 + 𝜙)
𝑘
Met eigen cirkelfrequentie: 𝜔 = √
𝑚
14.2 Energie (afleiding snelheid in functie van de 𝑥(𝑡))
1
𝐸𝑘 = 2 𝑚𝑣 2 (𝑡)
1
𝐸𝑝 = 𝑘 ∫ 𝑥 𝑑𝑥 = 𝑘 𝑥 2 (𝑡) (Algemene vorm van arbeid voor niet-constante kracht)
2
1 1
𝐸𝑡𝑜𝑡 = 𝐸𝑘 + 𝐸𝑝 = 𝑘 𝑥 2 (𝑡) + 𝑚𝑣 2 (𝑡)
2 2
𝑘 2 2 (𝜔𝑡)
𝑚. 𝐴2 . 𝜔2 𝐴2
= 𝐴 cos + . sin2 (𝜔𝑡) = (𝑘. cos2 (𝜔𝑡) + 𝑚. 𝜔2 . sin2 (𝜔𝑡))
2 2 2
2
𝐴2 𝑘 𝐴2
= (𝑘. cos2 (𝜔𝑡) + 𝑚. (√ ) . sin2 (𝜔𝑡)) = .𝑘
2 𝑚 2
𝑣 = 𝐴. 𝜔. sin(𝜔𝑡) → 𝑣𝑚𝑎𝑥 = ± 𝐴. 𝜔
𝐴2 1 1
𝐸𝑡𝑜𝑡 = . 𝑘 = 𝑘 𝑥 2 (𝑡) + 𝑚𝑣 2 (𝑡)
2 2 2
𝐴2 . 𝑘 − 𝑘. 𝑥 2 𝑘 𝑥2
→ 𝑣 = ±√ = ± √ . (𝐴2 − 𝑥 2 ) = ±√𝜔 2 . 𝐴2 − 𝜔 2 . 𝑥 2 = ±𝑣𝑚𝑎𝑥 √1 − 2
𝑚 𝑚 𝐴