100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting Trillingen, golfbewegingen, geluid

Beoordeling
-
Verkocht
3
Pagina's
24
Geüpload op
12-08-2022
Geschreven in
2022/2023

De hoofdstukken trillingen, golfbewegingen en geluid samengevat.

Instelling
Vak










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
12 augustus 2022
Aantal pagina's
24
Geschreven in
2022/2023
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Trillingen


Begrippen:
Trilling / oscillatie = een periodieke beweging veroorzaakt door de verstoring van een stabiele
evenwichtssituatie
Uitwijking = de afstand x van de massa tot het evenwichtspunt, op elk moment in de tijd
Amplitude A = de grootte van de maximale uitwijking/de grootste afstand tot het
evenwichtspunt
Cyclus = een complete heen-en-weer-beweging (van x = +A naar x = -A)
Periode T = tijd die het kost om een volledige cyclus te doorlopen T=1/f (s)
Frequentie f = het aantal doorlopen cycli per seconde. 1 Hz = 1 cyclus per f = 1/T (Hz)
seconde (s-1)


•Trillingen van een veer
- Een harmonische trilling: altijd onder invloed van een kracht evenredig en tegengesteld aan de
uitwijking
- Als een voorwerp steeds langs dezelfde weg heen en weer trilt/oscilleert, waarbij iedere trilling
evenveel tijd in beslag neemt = een periodieke beweging

- Periodieke beweging → een voorwerp voert een trilling uit aan het uiteinde
van een schroefveer


We nemen aan dat: k F=0
m
- de massa m van de veer mag verwaarloosd
X=0
- dat de veer horizontaal gemonteerd is
- zodat het voorwerp met massa zonder wrijving over het horizontale oppervlak glijdt
Iedere veer heeft uit zichzelf een lengte waarbij hij geen kracht uitoefent op de massa m
De plaats van de massa op dit punt wordt evenwichtsstand genoemd: x = 0



m m m




Voorwerp trekken naar rechts → veer uitgerokken
Voorwerp duwen naar links → veer gecomprimeerd

,Steeds oefent de veer kracht F uit op de massa in de richting waarin de massa terugkeert naar

de evenwichtsstand → terugdrijvende kracht F genoemd

F = -k.x → door de veer uitoefende kracht

Het minteken in de vgl. → de terugdrijvende kracht werkt altijd in tegenovergestelde richting
van uitwijking x

Veer ingedrukt → x negatief, de kracht → naar rechts gericht
De evenredigheidsconstante k = veerconstante/veerstijfheidsconstante
Hoe hoger de waarde van k, hoe groter de kracht die nodig is om de veer een zekere afstand uit te
rekken => hoe stijver de weer hoe groter k



F1
m m




→ →
Kracht F → niet constant, hangt af van de mate van uitrekking: F1 < F2

Daarom is versnelling a van de massa niet constant → vergelijkingen voor constante
versnelling gaat niet

F = -k.x → door de veer uitoefende kracht Fext = +k.x → externe kracht op de veer




Wat als de veer ingedrukt is over een afstand x = -A en dan
losgelaten wordt?
- Veer oefent kracht F uit op massa m → geduwd naar
evenwichtsstand
- De massa heeft traagheid → deze schiet met snelheid v de
evenwichtsstand voorbij
- Het punt waar de massa de evenwichtsstand bereikt → F = 0
- Snelheid v → bereikt vmax
- Terwijl de massa verder naar rechts beweegt, → een
toenemende afremmende kracht → de massa vertraagt en een
ogenblik tot stilstand x = A
- Vervolgens begint de massa terug te bewegen in de
tegenovergestelde richting en versnelt ze tot het evenwichtspunt
wordt gepasseerd, waarna ze weer afremt en een snelheid nul
bereikt op het oorspronkelijke beginpunt x = -A

, - Daarna herhaalt de massa de beweging waarbij het heen en weer gaat tussen x = A en x = -A
- de trilling van een verticaal opgehangen veer verschilt niet
wezenlijk van die van een horizontale veer
- de veer is in evenwicht als:

∑ F = 0 = mg – kx0

Dus de veer wordt een extra stuk x0 uitgerekt om in evenwicht te
komen x0 = m.g/k


•Enkelvoudige harmonische beweging




Goniometrische cirkel




- de tweede wet van Newton → F = m.a

- vesrnelling → a = d.v/d.t = d/d.t.(d.x/d.t) = d².x/d.t²
- Bewegingsvergelijking voor de enkelvoudige harmonische oscillator

F = m.d².x/d.t² = -k.x → d².x/d.t² + k/m.x = 0


- Voor algemene bewegingsvergelijking:
d².x/d.t² + k/m.x = 0
- Voorstel:

x = A.cos (𝜔.t + 𝜑)
- Alternatief:

x = a.cos cos𝜔.t + b = sin𝜔.t


Klopt het?
x = x(t) twee maal differentiëren
$4.23
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten


Ook beschikbaar in voordeelbundel

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
Se1in Katholieke Universiteit Leuven
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
86
Lid sinds
3 jaar
Aantal volgers
56
Documenten
0
Laatst verkocht
2 dagen geleden

3.8

12 beoordelingen

5
4
4
2
3
6
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen