Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4,6 TrustPilot
logo-home
Resume

Samenvatting Hoofdstuk 2: Eenvoudige Principes van de Discrete Wiskunde

Note
-
Vendu
-
Pages
10
Publié le
27-07-2022
Écrit en
2020/2021

Dit is de samenvatting van het tweede hoofdstuk van het vak Discrete Wiskunde. In deze samenvatting werd zowel alle informatie uit de slides als bijkomende informatie uit eigen notities en de cursustekst opgenomen.

Établissement
Cours









Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Cours
Cours

Infos sur le Document

Publié le
27 juillet 2022
Nombre de pages
10
Écrit en
2020/2021
Type
Resume

Sujets

Aperçu du contenu

Hoofdstuk 2: Eenvoudige principes van de
discrete wiskunde
1 De duiventil
Stelling (principe van de duiventil):
Als we n identieke objecten verdelen over k dozen met n > k, dan is er minstens 1 doos met
minstens 2 objecten.
Bewijs:
Uit het ongerijmde:
Veronderstel van niet. Dan is er in elke doos hoogstens 1 object. Zij m het aantal lege dozen.
Dan zijn er in totaal k – m dozen met juist 1 object. Vermits alle objecten verdeeld werden,
geldt:
𝑛 =𝑘−𝑚 ≤𝑘 <𝑛
En dat is een tegenspraak. ∎

1.1 Toepassing duiventil
Gevolg van de duiventil:
In de eerste 2013 elementen van de rij 7, 77, 777, … zit minstens 1 veelvoud van 2013.
Bewijs:
We noteren de eerste elementen van de rij 𝑎1 , 𝑎2 , … , 𝑎2013. Voor twee getallen a en b kunnen
we steeds quotiënt q en rest r bepalen zodat 𝑎 = 𝑞𝑏 + 𝑟 met 0 ≤ 𝑟 < 𝑏. Doe dit nu voor alle
getallen in de rij. Dus ∀ 𝑖 ∈ {1, … ,2013} bepalen we de 𝑞𝑖 en 𝑟𝑖 zo dat 𝑎𝑖 = 2013𝑞𝑖 + 𝑟𝑖 .
Als er een i bestaat met ri = 0, dan is ai deelbaar door 2013 en is er niets meer te bewijzen.
Veronderstel nu, uit het ongerijmde, dat geen enkele ri nul is. Dan is {𝑟1 , 𝑟2 , … , 𝑟2013 } een
deelverzameling van {1, 2, …, 2012}, de mogelijk niet-nulle resten bij deling door 2013. De
duiventil leert ons minstens 2 resten gelijk zijn. Dus ∃𝑖 ≠ 𝑗 ∈ {1,2, … ,2013} met 𝑟𝑖 = 𝑟𝑗 . We
mogen, zonder verlies van algemeenheid, aannemen dat 𝑎𝑖 > 𝑎𝑗 .

Bekijk nu het verschil 𝑎𝑖 − 𝑎𝑗 . Dit is enerzijds gelijk aan:




Of dus 𝑎𝑖 − 𝑎𝑗 = 77 … 77 × 10𝑗 .

Anderzijds is 𝑎𝑖 − 𝑎𝑗 = (2013𝑞𝑖 + 𝑟𝑖 ) − (2013𝑞𝑗 + 𝑟𝑗 ) = 2013(𝑞𝑖 − 𝑞𝑗 ) + 0, aangezien 𝑟𝑖 = 𝑟𝑗 .
Dus 𝑎𝑖 − 𝑎𝑗 = 𝑎𝑖−𝑗 × 10𝑗 is een veelvoud van 2013. Dit wil zeggen dat 𝑎𝑖−𝑗 × 10𝑗 deelbaar is
door 2013, maar vermits 10𝑗 geen enkele deler gemeenschappelijk heeft met 2013, moet
𝑎𝑖 − 𝑎𝑗 een veelvoud zijn van 2013. We bekomen een tegenspraak en dus is het
tegengestelde bewezen. ∎

1

, Notatie:
Zij 𝑥 ∈ ℝ. Dan noteren we:
⌈𝑥⌉ = 𝑘𝑙𝑒𝑖𝑛𝑠𝑡𝑒 𝑔𝑒ℎ𝑒𝑒𝑙 𝑔𝑒𝑡𝑎𝑙 ≥ 𝑥
⌊𝑥⌋ = 𝑔𝑟𝑜𝑜𝑡𝑠𝑡𝑒 𝑔𝑒ℎ𝑒𝑒𝑙 𝑔𝑒𝑡𝑎𝑙 ≤ 𝑥

Veralgemeende duiventil:
𝑛
Als je n identieke objecten verdeelt over k dozen, dan is er minstens 1 doos met minstens ⌈ ⌉
𝑘
objecten. Het bewijs is analoog met dat van de gewone duiventil.

1.2 Toepassing veralgemeende duiventil
In een groep van 6 mensen zijn elke 2 individu’s ofwel vrienden ofwel vijanden. Men kan met
zekerheid zeggen dat er in deze groep drie mensen zijn die ofwel 2 aan 2 vrienden zijn,
ofwel 2 aan 23 vijanden.
Bewijs:
Zij A een van die personen. De overblijvende 5 personen vallen uiteen in 2 groepen: de
vrienden van A en de vijanden van A. Door het veralgemeend principe van de duiventil bevat
5
1 van die 2 groepen minstens ⌈ ⌉ = 3 personen. Onderstel dat we dus minstens 3 vrienden
2
hebben (het geval dat er minstens 3 vijanden zijn verloopt analoog). We noemen B, C, D drie
van die vrienden. Als 2 van de 3 bevriend zijn is het bewijs gedaan. Als geen 2 van de drie
vriend zijn, hebben we 3 personen gevonden die 2 aan 2 vijanden zijn. ∎




2 Eenvoudige teltechnieken
Als we objecten tellen in dozen (zoals in het vorige deel) komt het er eigenlijk op neer dat we
elementen tellen in disjuncte verzamelingen.

2.1 Tellen
Stelling:
Twee eindige verzamelingen A en B bevatten evenveel elementen als en slechts als er een
bijectie A ←→ B bestaat.
Formeel definiëren wat we bedoelen met “aantal elementen in een eindige verzameling”.

• elementen van een verzameling A tellen
o komt eigenlijk overeen mat nummeren van de elementen van A.
▪ neem een eerste element weg uit de verzameling, dan een tweede
enz. tot er geen meer zijn
• Dit resulteert in een bijectie f tussen de verzameling {1, 2, . . . , n} en A met f(i) = i-de
element van A in onze selectie.

2
$4.75
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien


Document également disponible en groupe

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
lennyS Vrije Universiteit Brussel
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
163
Membre depuis
5 année
Nombre de followers
62
Documents
34
Dernière vente
1 mois de cela

4.5

6 revues

5
4
4
1
3
1
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions