100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

Area and Arc Length solved questions

Beoordeling
-
Verkocht
-
Pagina's
10
Cijfer
A
Geüpload op
18-07-2022
Geschreven in
2021/2022

Area and Arc Length solved questions

Instelling
Vak









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
18 juli 2022
Aantal pagina's
10
Geschreven in
2021/2022
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

CHAPTER 21
Area and Arc Length

21.1 Sketch and find the area of the region to the left of the parabola x = 2y2, to the right of the y-axis, and between
y — 1 and y — 3.
See Fig. 21-1. The base of the region is the y-axis. The area is given by the integral




Fig. 21-1 Fig. 21-2


21.2 Sketch and find the area of the region above the line y = 3x - 2, in the first quadrant, and below the line
y = 4.
See Fig. 21-2, The region has a base on the y-axis. We must solve y = 3x - 2 for x:
Then the area is


21.3 Sketch and find the area of the region between the curve y = x3 and the lines y = — x and y = 1.
See Fig. 21-3. The lower boundary of the region is y=—x and the upper boundary is y = x3. Hence,
the area is given by the integral

In Problems 21.4-21.16, sketch the indicated region and find its area.




Fig. 21-3 Fig. 21-4


21.4 The bounded region between the curves y = x2 and y = x3.
See Fig. 21-4. The curves intersect at (0,0) and(l, 1). Between x = 0 and x = 1, y = x2 lies above
y = x3. The area of the region between them is

163

, 164 CHAPTER 21

21.5 The bounded region between the parabola y = 4x2 and the line y - 6x - 2.
See Fig. 21-5. First we find the points of intersection: 4x2 = 6x-2, 2x2 - 3x + I = 0, (2x - l)(x - 11 =
U, x=k or x = l. So, the points of intersection are (1,1) and (1,4). Hence, the area is il,2[(6x-2)~
4*2]<ic = (3* 2 -2;c-tx 3 )]| / 2 = ( 3 - 2 - i ) - ( ! - l - i ) = i .




Fig. 21-5 Fig. 21-6

21.6 The region bounded by the curves y = Vx, y = l, and x = 4.
See Fig. 21-6. The region is bounded above by y] and below by y = 1. Hence, the area is given
by

21.7 The region under the curve and in the first quadrant.
See Fig. 21-7. The region has its base on the x-axis. The area is given by




Fig. 21-7 Fig. 21-8

21.8 The region bounded by the curves y = sin x, y = cos x, x = 0, and x = 7T/4,
See Fie. 21-8. The upper boundary is y = cos x, the lower boundary is y = sin x, and the left side is
the y-axis. The area is given by (cos x — sin x) dx = (sin x + cos x) ], -(0+1) = -1

21.9 The bounded region between the parabola x = -y2 and the line y = x + 6.
See Fig. 21-9. First we find the points of intersection: y = -y2 + 6, y 2 + y - 6 = 0, (y -2)(y + 3) = 0,
y = 2 or y = - 3 . Thus, the points of intersection are (-4,2) and (-9,-3). It is more convenient to
integrate with respect to y, with the parabola as the upper boundary and the line as the lower boundary. The
area is given by the integral f* [-y2 - (y - 6)1 dy = (- iy3 - ^y2 + 6y) ]2_, = (- f - 2 + 12) - (9 - 1 - 18) =


21.10 The bounded region between the parabola y = x2 - x - 6 and the line y = -4.
See Fig. 21-10. First we find the points of intersection: -4 = x2 - x - 6, x2 - x - 2 = 0, (x - 2)(x +
1) = 0, x = 2 or x = -I. Thus, the intersection points are (2, -4) and (-1, -4). The upper boundary of
the region is y = —4, and the lower boundary is the parabola. The area is given by J^j [-4 — (x2 — x -
6)]dx = $2_l(2-x2 + x)dx = (2x-lx3+kx2)t1 = (4-l+2)-(-2+l + i2)=92.
$9.10
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
jureloqoo

Ook beschikbaar in voordeelbundel

Maak kennis met de verkoper

Seller avatar
jureloqoo METU
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
0
Lid sinds
3 jaar
Aantal volgers
0
Documenten
46
Laatst verkocht
-

0.0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen