100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

Curve Sketching (Graphs) solved questions

Beoordeling
-
Verkocht
-
Pagina's
18
Cijfer
A
Geüpload op
18-07-2022
Geschreven in
2021/2022

Curve Sketching (Graphs) solved questions

Instelling
Vak










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
18 juli 2022
Aantal pagina's
18
Geschreven in
2021/2022
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

CHAPTER 15
Curve Sketching (Graphs)

When sketching a graph, show all relative extrema, inflection points, and asymptotes; indicate concavity; and
suggest the behavior at infinity.
In Problems 15.1 to 15.5, determine the intervals where the graphs of the following functions are concave
upward and where they are concave downward. Find all inflection points.

15.1 f(x) = x2 - x + 12.
I f ' ( x ) = 2x — l, f"(x) = 2. Since the second derivative is always positive, the graph is always concave
upward and there are no inflection points.

15.2 /(*) = A:3 + I5x2 + 6x + 1.
I f ' ( x ) = 3x2+3Qx + 6, f"(x) = 6x + 30 = 6(x + 5). Thus, f"(x)>0 when jc>-5; hence, the graph is
concave upward for ;t>-5. Since f"(x)<0 for x<-5, the graph is concave downward for x<-5.
Hence, there is an inflection point, where the concavity changes, at (5,531).

15.3 /(AT) = x4 + I8x3 + UOx2 + x + l.
I f ' ( x ) = 4xj+ 54x2+240x + l, f"(x) = \2x2 + W8x + 240= 12(x2 + 9x + 20) = U(x + 4)(x + 5). Thus,
the important points are x = -4 and x = -5. For x > -4, x + 4 and x + 5 are positive, and, there-
fore, so is /"(•*). For -5<A:<-4, x + 4 is negative and x + 5 is positive; he nee, f"(x) is negative. For
x<-5, both x+4 and x + 5 are negative, and, therefore,/"(A:) is positive. Therefore, the graph is
concave upward for x > -4 and for A: < -5. The graph is concave downward for -5 < x < -4. Thus,
the inflection points are (-4,1021) and (-5,1371).

15.4 f(x) = x/(2x-l).
I /(*) = [ ( * - i ) + | ] / [ 2 ( * - i ) ] = i { l + [l/(2*-l)]}. Hence, /'(*) = i[-l/(2* - I) 2 ] - 2 = -l/(2x - I)2.
Then /"(*) = [ l / ( 2 x - I) 3 ] - 2 = 2/(2x - I)3. For x>$, 2* - 1 >0, f"(x)>0, and the graph is concave
upward. For x<\, 2x — 1<0, /"(AC)<O, and the graph is concave downward. There is no inflection
point, since f(x) is not defined when x = |.

15.5 f(x) = 5x4 - x".
I f ' ( x ) = 2Qx*-5x\ and /"(*) = 6Qx2 -20x* = 20x\3 - x). So, for 0 < * < 3 and for *<0, 3-
;c>0, /"(A-)>O, and the graph is concave upward. For jc>3, 3 - J c < 0 , /"(AT)<O, and the graph is
concave downward. There is an inflection point at (3,162). There is no inflection point at x = 0; the graph
is concave upward for x < 3.

For Problems 15.6 to 15.10, find the critical numbers and determine whether they yield relative maxima, relative
minima, inflection points, or none of these.

15.6 f(x) = 8 - 3x + x2.
I f ' ( x ) = -3 + 2x, f"(x) = 2. Setting -3 + 2A: = 0, we find that x = \ is a critical number. Since
/"(AC) = 2>0, the second-derivative test tells us that there is a relative minimum at x= \.

15.7 f(x) = A-4 - ISA:2 + 9.
I /'W = 4Ar 3 -36A: = 4A:(A; 2 -9) = 4A:(A:-3)(A: + 3). f(x) = 12;t2 - 36 = 12(A:2 - 3). The critical numbers
are 0, 3, -3. /"(O) =-36<0; hence, x = 0 yields a relative maximum. /"(3) = 72>0; hence, x = 3
yields a relative minimum. /"(-3) = 72>0; hence x = -3 yields a relative minimum. There are inflection
points at x = ±V5, y = -36.

100

, CURVE SKETCHING (GRAPHS) D 101

15.8 f(x) = x-5x -8*+ 3.
I /'(*) = 3* 2 -10jt-8 = (3;c + 2)(.x-4). /"(*) = 6x - 10. The critical numbers are x = -\ and A: = 4.
/"(-§)=-14 <0; hence, * = - § yields a relative maximum. /"(4)=14>0; hence, x = 4 yields a
relative minimum. There is an inflection point at x = f .

15.9 f(x) = x2/(x-l).
So, / ' W = l - l / ( x - l ) 2 , /"(x) = 2/(^-l) 3 .
Thus, the critical numbers are the solutions of l = l / ( j e — 1 ) , (*-l) = 1, * — 1 = ±1, x=Q or x = 2.
/"(0) = -2<0; thus, jc=0 yields a relative maximum. /"(2) = 2>0; thus, A: = 2 yields a relative
minimum.

15.10 f(x) = x2/(x2 + l).
I f(x) = 1- l/(jc 2 + 1). So, f ' ( x ) = 2x/(x2 + I)2. The only critical number is x = 0. Use the first-deriva-
tive test. To the right of 0, f'(x)>0, and to the left of 0, /'(*)<0. Thus, we have the case {-,+}, and,
therefore, x = 0 yields a relative minimum. Using the quotient rule, f"(x) = 2(1 - 3jt 2 )/(;t 2 + I)3. So,
there are inflection points at x = ± 1 /V3, y = 1.

In Problems 15.11 to 15.19, sketch the graph of the given function.

15.11 f(x) = (x2 - I)3.
2
| f(x) = 3(x - i)2 . 2x = 6x(x2 - I)2 = 6x(x - l)\x + I)2. There are three critical numbers 0,1, and -1.
At x=Q, f'(x)>0 to the right of 0, and /'(*)< 0 to the left of 0. Hence, we have the case {-,+} of
the first derivative test; thus x = 0 yields a relative minimum at (0, -1). For both x = l and x = —I,
f ' ( x ) has the same sign to the right and to the left of the critical number; therefore, there are inflection points at
(1,0) and (-1,0). When x-»±=°, /(*)-»+».
It is obvious from what we have of the graph in Fig. 15-1 so far that there must be inflection points between
x=— 1 and x = 0, and between x = Q and jc = l. To find them, we compute the second derivative:
/"(*) = 6(x - l)2(x + I) 2 + I2x(x - l)2(x + 1) + 12*(x - l)(x + I) 2
= 6(x — l)(x + l)[(x — l)(x + 1) + 2x(x - 1) + 2x(x + 1)]
=6(x-1)(x+1)(5x2-1)
Hence, the inflection points occur when 5x2 - 1 = 0 . x2 = \,
—0.51. The graph is in Fig. 15-1.




Fig. 15-1 (2, -5) Fig. 15-2
15.12 f(x) = x3 - 2x2 - 4x + 3.
I /'(*) = 3* 2 -4A:-4=(3.x + 2)(;c-2). /"(*) = 6x - 4 = 6(x - 1). The critical numbers are * = -f
and x = 2. /"(-§)=-8<0; hence, there is a relative maximum at Jt = -|, > > = ^ = 4 . 5 . /"(2) = 8>
0; so there is a relative minimum at A: = 2, y = — 5. As jc-»+x, /(*)—* +°°- As x—»—»,
/(j:)-» -oo. To find the inflection point(s), we set f"(x) = 6x - 4 = 0, obtaining * = § , y--yi'a -0.26.
The graph is shown in Fig. 15-2.

, 102 0 CHAPTER 15

15.13 f(x) = x(x - 2)2.
| f'(x) = x.2(x-2) + (x-2)2 = (x-2)(3x-2), and f"(x) = (x -2)-3 + (3* -2) = 6* -8. The critical
numbers are jc = 2 and j c = | . /"(2) = 4>0; hence, there is a relative minimum at Jt = 2, y = 0 .
/"(|) = -4 < Q; hence, there is a relative maximum at * = |, y = H ~ 1.2. There is an inflection point
where /"(*) = 6* - 8 = 0, x = § , y = $ ~ 0 . 6 . As x -»+«>, /(*)-»+00. As x-»-oo, /(*)-»-°°.
Notice that the graph intersects the x-axis at x = 0 and x-2. The graph is shown in Fig. 15-3.




Fig. 15-3 Fig. 15-4

15.14 f(x) = x*+4x3.
I f'(x) = 4x3 + 12x2 = 4x2(x + 3) and /"(*) = 12x2 + 24x = 12X* + 2). The critical numbers are x = 0
and x = -3. /"(O) = 0, so we have to use the first-derivative test: f ' ( x ) is positive to the right and left of 0;
hence, there is an inflection point at x = Q, y = 0. /"(-3) = 36>0; hence, there is a relative minimum at
x=—3, y = —27. Solving f"(x) = 0, we see that there is another inflection point at x = — 2, y = —16.
Since f(x) = x}(x + 4), the graph intersects the AT-axis only at x = 0 and x =
—4. As x—* ±o°, /(*)—»+<». The graph is shown in Fig. 15-4.

15.15 /(A:) = 3A:5 - 2(k3.
I /'(A:) = 15A:4-60jc2 = 15xV-4) = 15A:2(^-2)(A: + 2), and /"(*) = 60x3 - 120x = 6CU(;r - 2)i =
60A:(A: - V2)(x + V2). The critical numbers are 0,2, -2. /"(0) = 0. So, we must use the first-derivative
test for x = 0. f ' ( x ) is negative to the right and left of x = 0; hence, we have the {-,-} case, and there is
an inflection point at x = 0, y = 0. For x = 2, f"(2) = 240 > 0; thus, there is a relative minimum at
x = 2, y = -64. Similarly, f"(-2) =-240<0, so there is a relative maximum at x = -2, y = (A. There
are also inflection points at x = V2, y = -28V5« -39.2, and at x =-V2, >• = 28V2 = 39.2. As
A:-*+=C, /(X)-*+M. As JT-»-<», /(*)-»-<». See Fig. 15-5.




Fig. 15-5


15.16
' /'W = s(jf - l)" 2/ "\ and /"(*) = ~ i ( x ~ V'*- The only critical number is x = l, where/'(*) is not
denned. /(1) = 0. f ' ( x ) is positive to the right and left of x = \. f"(x) is negative to the right of j c = l ; so
the graph is concave downward for x > 1. f"(x) is positive to the left of x = 1; hence, the graph is concave
upward for x<l and there is an inflection point at x = \. As *—»+°°, f(x)—» +«, and, as JT—»—»,
/W^-=o. See Fig. 15-6.
$9.10
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
jureloqoo

Ook beschikbaar in voordeelbundel

Maak kennis met de verkoper

Seller avatar
jureloqoo METU
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
0
Lid sinds
3 jaar
Aantal volgers
0
Documenten
46
Laatst verkocht
-

0.0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen