100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

The Derivative solved questions

Rating
-
Sold
-
Pages
7
Grade
A+
Uploaded on
18-07-2022
Written in
2021/2022

The Derivative solved questions

Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
July 18, 2022
Number of pages
7
Written in
2021/2022
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

CHAPTER 8
The Derivative

8.1 Using the A-definition, find the derivative /'(x) of the function /(x) = 2x - 7.
So,
Hence Thus, Answer

8.2 Using the A-definition, show that the derivative of any linear function /(x) = Ax + B is f ' ( x ) = A.
Then,
Hence. Thus,

8.3 Using the A-definition, find the derivative f ' ( x ) of the function /(x) = 2x2 - 3x + 5.



Thus, Hence,
lim

8.4 Using the A-definition, find the derivative /'(*) of the function f(x) = x3.
So,
So,
Thus,

8.5 State the formula for the derivative of an arbitrary polynomial function f(x) = anx" + an_lx" ' + • • • + a2x2 +
a1x+a0.


8.6 Write the derivative of the function f(x) = lx~ - 3x4 + 6x2 + 3x + 4.
/'(*) = 35x4 - I2x3 + \2x + 3.

8.7 Given functions f(x) and g(x), state the formulas for the derivatives of the sum f(x) + g(x), the product
fix) • e(x), and the quotient f(x) /g(x).




[Notice the various ways of denoting a derivative:

8.8 Using the product rule, find the derivative of f(x) = (Sx3 - 20* + 13)(4;t6 + 2x5 - lx2 + 2x).
F'(x) = (5x3-2Qx+13)(24x5 + Wx4-Ux + 2) + (4x" + 2x5-Ix2 + 2x)(15x2-20). [In such cases, do
not bother to carry out the tedious multiplications, unless a particular problem requires it.]

8.9 Using the formula from Problem 8-7. find the derivative of




49

, 50 CHAPTER 8


8.10 Using the formula from Problem 8.7, find the derivative of




8.11 Using the A-definition, find the derivative of

Hence



So,

and

8.12 Using formulas, find the derivatives of the following functions: (a)


(a) -40x4 + 3V3 x2 + 4Trx. Answer
(b) W2x50 + 36xu - 2Sx + i/7. Answer

8.13 Find the slope-intercept equation of the tangent line to the graph of the function f(x) = 4x3 - 7x2 at the point
corresponding to x = 3.
When x = 3, f(x) - 45. So, the point is (3,45). Recall that the slope of the tangent line is the derivative
/'(*), evaluated for the given value of x. But, /'(*) = 12x2 - Ux. Hence, /'(3) = 12(9) - 14(3) = 66.
Thus, the slope-intercept equation of the tangent line has the form y = 66x + b. Since the point (3,45) is on
the tangent line, 45 = 66(3) + 6, and, therefore, b = -153. Thus, the equation is v=66*-153.
Answer

8.14 At what point(s) of the graph of y = x5 + 4x - 3 does the tangent line to the graph also pass through the point
5(0,1)?
The derivative is y' = 5x4 + 4. Hence, the slope of the tangent line at a point A(xa, y0) of the graph is
5*o + 4. The line AB has slope So, the line AB is the tangent line if and
+4
only if (x0 + 4x0 - 4) Ix0 = 5x1 - Solving, x0 = — 1. So, there is only one point (—1, —8).

8.15 Specify all lines through the point (1, 5) and tangent to the curve y = 3>x3 + x + 4.
y' = 9x2 + l. Hence, the slope of the tangent line at a point (xa, ya) of the curve is 9*0 + 1. The slope of
the line through (x0, y0) and (1,5) is So, the tangent line passes

through (1,5) if and only if = 9x20 + l, 3*2 + j r 0 - l = (je 0 -l)(9*S + l), 3x30 + x0-l=9x30-
9**+ *„-!, 9*0 = 6*0, 6*o-9*o = 0, 3*0(2*0 - 3) = 0. Hence, *0 = 0 or * 0 = | , and the points on
the curve are (0, 4) and (§, ^). The slopes at these points are, respectively, 1 and f . So, the tangent lines are
y — 4 = x and y — *TT = T(X—%), or, equivalently, y = x + 4 and y = S f X — ".

8.16 Find the slope-intercept equation of the normal line to the graph of y = jc3 — x2 at the point where x = l.
The normal line is the line perpendicular to the tangent line. Since y' = 3x2 — 2x, the slope of the tangent
lineal x = 1 is 3(1)2 - 2(1) = 1. Hence, the slope of the normal line is the negative reciprocal of 1, namely
— 1. Thus, the required slope-intercept equation has the form y = —x + b. On the curve, when x = \,
y = (I) 3 - (I) 2 = 0. So, the point (1,0) is on the normal line, and, therefore, 0 = -1 + b. Thus, b = \,
and the required equation is y = — x + 1.

8.17 Evaluate
$9.08
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
jureloqoo

Also available in package deal

Get to know the seller

Seller avatar
jureloqoo METU
Follow You need to be logged in order to follow users or courses
Sold
0
Member since
3 year
Number of followers
0
Documents
46
Last sold
-

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions