100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

solved questions for calculus

Beoordeling
-
Verkocht
-
Pagina's
12
Cijfer
A+
Geüpload op
18-07-2022
Geschreven in
2021/2022

solved questions for calculus

Instelling
Vak









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
18 juli 2022
Aantal pagina's
12
Geschreven in
2021/2022
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

CHAPTER 22
Volume

22.1 Derive the formula V= jirr 3 for the volume of a sphere of radius r.
Consider the upper semicircle y = Vr2 - x2 (Fig. 22-1). If we rotate it about the x-axis, the
sphere of radius r results. By the disk formula, V= TT Jl y2 dx = TT |I (r2 - x2) dx = ir(r2x - j*3) lr_ =
TKr3-ir3)-(-rJ+ir3)]=^r3.




Fig. 22-1 Fig. 22-2

22.2 Derive the formula V= \irr-h for the volume of a right circular cone of height h and radius of base r.
Refer to Fig. 22-2. Consider the right triangle with vertices (0,0), (h, 0), and (h,r). If this is rotated about
the x-axis, a right circular cone of height h and radius of base r results. Note that the hypotenuse of the triangle
lies on the line y = (r/h)x. Then, by the disk formula,



In Problems 22.3-22.19, find the volume generated by revolving the given region about the given axis.

22.3 The region above the curve y = jc3, under the line y = \, and between * = 0 and * = !; about the
AC-axis.
See Fig. 22-3. The upper curve is y = 1, and the lower curve is y = x3. We use the circular ring for-
mula: V = w Jo' [I2 - (x3)2] dx = rr(x - fce7) ]10 = TT(! - }) = f TT.




Fig. 22-3

22.4 The region of Problem 22.3, about the y-axis.
We integrate along the y-axis from 0 to 1. The upper curve is x = y1'3, the lower curve is the y-axis, and
we use the disk formula:

22.5 The region below the line y-2x, above the x-axis, and between jr = 0 and x = I; about the jc-axis.
(See Fig. 22-4.)
We use the disk formula:

173

, 174 CHAPTER 22




Fig. 22-4

22.6 The region of Problem 22.5, about the y-axis.
We use the cylindrical shell formula:

22.7 The region of Problem 21.39, about the jc-axis.
The curves intersect at (0, 0) and (1,1). The upper curve is and the lower curve is
We use the circular ring formula:


22.8 The region inside the circle x2 + y2 = r2 with 0<x<a<r; about the .y-axis. (This gives the volume cut
from a sphere of radius r by a pipe of radius a whose axis is a diameter of the sphere.)
We shall consider only the region above the *-axis (Fig. 22-5), and then, by symmetry, double the result. We
use the cylindrical shell formula:
We multiply by 2 to obtain the
answer




Fig. 22-5 Fig. 22-6

22.9 The region below the quarter-circle x2 + y2 = r2 (x>0, y >0) and above the line y = a, where 0 < a < r ;
about the y-axis. (This gives the volume of a polar cap of a sphere.)
See Fig. 22-6. We use the disk formula along the y-axis:


22.10 The region bounded by y = 1 + x2 and y = 5; about the x-axis. (See Fig. 22-7.)




Fig. 22-7
$9.10
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
jureloqoo

Ook beschikbaar in voordeelbundel

Maak kennis met de verkoper

Seller avatar
jureloqoo METU
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
0
Lid sinds
3 jaar
Aantal volgers
0
Documenten
46
Laatst verkocht
-

0.0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen