2. 1 .
Double integrals i
iterated integrals
Revision :
Riemann sum
Riemann sum
f- (a) Ca , b)
-
y
-
, Area =
f- ( ti ) ✗ DX
,
""
f- ( 1- 2) Dkz
;
^ Area
=
,
Area =
fits )n↳
-
5 > Approximation
t2 1- 3
~
dt ,
b
→ Divide interval into smaller intervals
[ intervals don't have to be same
length )
→ Area btw .
f and a- d ✗ is 0h [9lb ]
≈ § f- ( th ) Dan .
§ Jab f- (x ) da k -1
-
Now consider d function of 2 Variables defined on a
rectangle R
→ Divide R into smaller rectangles
→ choose a point in
every small rectangle Caij yij ) ,
→ volume of
small
=
flxij yij ) ,
Dui DYI
black
Riemann sum =
Double integral
?⃝
, tim
miso
h→o
↑ I flxij
it j=1
, yij ) ☐A
} Riemann
sum
JJ fix ,y)dA
⑥ A)
R
→ if f- (a) y ) ≥ 0 the volume of the solid above R
,
region
below the function 2- = fl≥ ,y ) is :
Sf fix,y)dA
r ¥ .
HOW DO WE CALCULATE SS tiny)dA ?
R
'
① Describe region retype
type 2 region
① writedbitgrdasiterdtedintegrals
TYPE I l vertical )
A region Rin R2 is a type 1 region it
R= { cxiy ) / a ≤
✗ ≤ b
g.cn,
≤ y ≤ gzcx ) }
,
Lcenstdhts
a- 9164
•
btw
bg
" •
btw 2 functions
• >
•
btw2-r-ieli.net
, ,≥,
Double integrals i
iterated integrals
Revision :
Riemann sum
Riemann sum
f- (a) Ca , b)
-
y
-
, Area =
f- ( ti ) ✗ DX
,
""
f- ( 1- 2) Dkz
;
^ Area
=
,
Area =
fits )n↳
-
5 > Approximation
t2 1- 3
~
dt ,
b
→ Divide interval into smaller intervals
[ intervals don't have to be same
length )
→ Area btw .
f and a- d ✗ is 0h [9lb ]
≈ § f- ( th ) Dan .
§ Jab f- (x ) da k -1
-
Now consider d function of 2 Variables defined on a
rectangle R
→ Divide R into smaller rectangles
→ choose a point in
every small rectangle Caij yij ) ,
→ volume of
small
=
flxij yij ) ,
Dui DYI
black
Riemann sum =
Double integral
?⃝
, tim
miso
h→o
↑ I flxij
it j=1
, yij ) ☐A
} Riemann
sum
JJ fix ,y)dA
⑥ A)
R
→ if f- (a) y ) ≥ 0 the volume of the solid above R
,
region
below the function 2- = fl≥ ,y ) is :
Sf fix,y)dA
r ¥ .
HOW DO WE CALCULATE SS tiny)dA ?
R
'
① Describe region retype
type 2 region
① writedbitgrdasiterdtedintegrals
TYPE I l vertical )
A region Rin R2 is a type 1 region it
R= { cxiy ) / a ≤
✗ ≤ b
g.cn,
≤ y ≤ gzcx ) }
,
Lcenstdhts
a- 9164
•
btw
bg
" •
btw 2 functions
• >
•
btw2-r-ieli.net
, ,≥,