100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Samenvatting Wiskundige methoden en technieken Stappenplan - semester 1

Rating
4.6
(7)
Sold
43
Pages
18
Uploaded on
04-07-2022
Written in
2021/2022

Aangezien wiskunde een zeer moeilijk vak was om te studeren, had ik nood aan een extra overzicht van de theorie. In het bestand vind je de te kennen theorie terug maar dan met stappenplannen en voorbeelden om de leerstof beter te begrijpen en toe te kunnen passen! Als student die 2 uur wiskunde per week heeft gekregen in het middelbaar heb ik toch dankzij dit overzicht een 14 op 20 gehaald! Docent: Ida Ruts

Show more Read less
Institution
Module










Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Module

Document information

Uploaded on
July 4, 2022
Number of pages
18
Written in
2021/2022
Type
Summary

Subjects

Content preview

!!! Kijk in boek/ HC/WK voor andere relevante theorie en grafieken en oefeningen!!!


REËLE FUNCTIES VAN EEN VERANDERLIJKE (H1)
Kernbegrippen i.v.m functie’s
DEF Expliciet/ impliciet

Men spreekt v/e expliciete voorstelling van de Men spreekt v/e impliciete voorstelling van de
functie f : ℝ->ℝ, wnr voorschrift geëxpliceerd functie f : ℝ->ℝ, wanneer het voorschrift
is naar de afhank. veranderlijke, m.a.w. y = f(x) impliciet bepaald wordt uit een verband F(x,y) = 0

DEF Symmetrieën

Een reële functie f : ℝ->ℝ : x->f(x) is een even Een reële functie f : ℝ->ℝ : x->f(x) is een oneven
functie, indien voor elke waarde x uit het functie, indien voor elke waarde x uit het domein
domein geldt: f(−x) = f(x) geldt: f(−x) = −f(x)

-> grafisch: symmetrisch t.o.v de y-as -> grafisch: symmetrisch t.o.v de oorsprong

Stappenplan:
1) Test: vervang alle x-waarden door -x
2) Gaan alle “-“ worden weggewerkt?
-ja: even functie (opl is f(−x) = f(x))
-nee: oneven functie (opl is f(−x) = -f(x))

DEF Inverse functie
Stappenplan:
Een functie f-1 : ℝ->ℝ : x-> f-1(x) is de inverse 1) Herschrijf het voorschrift y=f(x) tot een vorm
functie van f : ℝ->ℝ : x->f(x), indien voor elke x= een functie van y
waarde x uit het domein van f geldt: 2) Controleer of het domein beperkt moet
f(x) = y <=> f-1(y) = x worden
2.1) indien nodig, voorschrift opnieuw
Merk op oef: domein en bereik omwisselen herschrijven zodat het beperkt wordt
-> grafisch: gespiegeld t.o.v de 1ste bissectrice 3) Wissel x en y om

DEF Samenstellen van functies
Stappenplan:
Een reële functie h : ℝ->ℝ : x->h(x) is een 1) Neem functie voorschrift v/d 1ste komende (f)
samenstelling van functies g : ℝ->ℝ : x->g(x) als argument bij de 2de (g)
“na” f : ℝ->ℝ : x->f(x), of H = g o f 2) Neem de functie v/d 2de en pas argument toe

Limietwaarde -> kijk werkcollege 3! En schema achteraan!
DEF Limiet

Een functie f : ℝ->ℝ : x->f(x) bereikt in het lim f ( x )=L -> “de limiet van f voor x gaande naar a”
x→ a
punt x = a de limietwaarde L, of
lim f ( x )=L
x→ a Limiet is “naderen tot een bepaald punt en zien
Als de functiewaarden f(x) willekeurig dichter wat het beeld doet” -> bestaat alleen als linker-
bij L komen als punten x dichter naar a gaat. en rechterlimiet hetzelfde zijn!

Linkerlimiet: Als f(x) willekeurig dichter bij L komen als punten x kleiner dan a dichter naar a gaat
Rechterlimiet: Als f(x) willekeurig dichter bij L komen als punten x groter dan a dichter naar a gaat
Limieten oneigenlijke: Als f(x) oneindig stijgt of daalt als x dichter naar a gaat (oplos. is: L=+∞/+∞)


Theorie + stappenplan + voorbeelden 1

, !!! Kijk in boek/ HC/WK voor andere relevante theorie en grafieken en oefeningen!!!


HA = limiet naar oneindig -> getal oplevert / VA = limiet naar getal -> oneindig oplevert
Rekenen met oneindigheden
Bepaalde vormen: Onbepaalde vormen:
+∞ ± C = +∞ -∞ ± C = -∞
+∞ . a = +∞ als a>0 -∞ . a = -∞ als a>0 0 ∞
+∞ . a = -∞ als a<0 -∞ . a = +∞ als 0
&

, +∞ - ∞, 0. ∞
a<0
+∞.+∞ = +∞ | -∞.-∞ = +∞ | +∞.-∞ = -


Continuïteit
DEF Continuïteit in een punt

Een functie f : ℝ->ℝ : x->f(x) is continu in een Indien de functiewaarde of de limietwaarde niet
punt x = a als lim f ( x )=f (a). bestaan, of indien ze verschillend zijn, noemt
x→ a men de functie discontinu in het betreffend punt.

-> indien discontinu is de 2de vraag op exame:
is de functie continu op het domein? (HC)

Belangerijke functies
DEF Veeltermfuncties

Veeltermfunctie van graad n heeft voorschrift Een veeltermfunctie heeft als domein de gehele
f : ℝ->ℝ : x->f(x) = anxn + an-1 xn-1 +…+a1x +a0 reële as en is continu ->notatie: domein ℝ

met n ∈ ℕ en met a0 , a1 ,…, an-1, an ∈ℝ en an≠0

DEF Lineaire functie (een veeltermfunctie van graad 1)
Lineaire functie heeft voorschrift f : De waarde m is de richtingcoëfficiënt of helling
ℝ->ℝ : x->f(x) = mx + q. van de functie, de waarde q bepaalt het snijpunt
Grafisch: een rechte van de beeldlijn van de functie met de y-as.

DEF Kwadratische functie = parabool (een veeltermfunctie van graad 2)
Elke vergelijking van de vorm y =ax2 + bx + c De top v/d parabool heeft coördinaten (x 0, y0)
(met a ∈ ℝ0 , b ∈ ℝ , c ∈ ℝ ) is een parabool. −b
met x0 = ; y0 is dan de functiewaarde van x0.
2. a
Grafisch: de symmetrie-as is evenwijdig aan
de y-as en heeft vergelijking x = x0. De parabool heeft de holle zijde naar boven
indien a > 0, naar beneden indien a < 0

DEF Rationale functies (2 veeltermfuncties in breuk)

Een rationale functie heeft voorschrift f : Het domein van een rationele functie is de ℝ
ℝ->ℝ : x->f(x)= verminderd met de waarde waarvoor de noemer
n n−1
an x + an−1 x +…+ a1 x +a 0 nul wordt. Een rationale functie is continu op
m m−1 haar domein. -> notatie: domein ℝ¿ {…¿}
bm x + bm−1 x + …+b1 x+b 0

met n ∈ ℕ en met a0,a1…,an,b0,b1…bm ∈ ℝ




Theorie + stappenplan + voorbeelden 2

, !!! Kijk in boek/ HC/WK voor andere relevante theorie en grafieken en oefeningen!!!


DEF Irrationale functies (veeltermfunctie onder een wortel)

Een irrationale functie heeft een voorschrift Het domein v/e irrationale functie is beperkt tot
waarin 1 of meer wortelvormen voorkomen. dat deel v/d reële as waarvoor het argument
onder de wortel het juiste teken bezit (≥0).
-> notatie: domein f = ¿−∞ , …¿ ¿ ∪ ¿
DEF De cirkel
De impliciete vergelijking beschrijft een cirkel Het middelpunt van deze cirkel heeft coördinaten
(x-x0)2 + (y-y0)2 = r2 (x0, y0) (-> let op: intrepretatie + en – in formule)
En de straal is r dus √ r 2
+¿ ¿
met x0 en y0 ∈ ℝ en r2 ∈ R0 En domein is altijd = [( x0 −r ),( x0 +r )]

DEF Expontentiële functies (machten)

Exponentiële functie heeft voorschrift: expa is een strikt stijgende functie indien a>1 en
+¿ ¿
expa: ℝ-> R0 : x-> expa = ax een strikt dalende functie indien a<1

met a ∈ ℝ+\{ 0,1 } Als a<1: functie met x-as als HA aan rechterkant
+¿ ¿
(ℝ-> R0 dus oplossing altijd positief) en als a>1: functie met x-as als HA aan linkerkant

Specifiek: natuurlijke expontentiële functie -> heeft grondtal het getal van Euler: e=2,7
Wnr a = getal van Euler dan notatie exp(x) = ex -> verloopt stijgend bcs e>1
-> p. 24 het verloop van de exponentiele functies: e x , e-x, -ex , -e-x moet je kennen!

DEF Logaritmische functies

+¿ ¿
De logaritmische functie loga is de inverse van Bereik R0 ->nooit logaritme van neg getal
de exponentiële functie expa. het voorschrift: neme!
+¿ ¿
loga: R0 ->ℝ : x-> loga (x) en w. gedifinieerd
als: Eigenschappen ook voor specifieke gevalle:
loga (x) = y <=> x = ay
loga is een strikt stijgende functie indien a>1 en
met a ∈ ℝ+\{ 0,1 } een strikt dalende functie indien a<1

bv: log2 16 = 4 want 2?=16

Specifiek: briggse logaritmische functie -> heeft grondtal 10
Notatie briggse logaritmische functie: log (x) = log10 (x)

Specifiek: natuurlijke logaritmische functie -> heeft grondtal het getal van Euler: e=2,7
Wnr a = getal van Euler dan notatie ln(x) = loge (x) en wordt gedefinieerd als y = ln (x) <=> x = ey
-> p. 27 het verloop van de natuurlijke logaritmische functie moet je kennen!

Rekenregels logaritmen

Loga (x.y) = Loga (x) + Loga (y) ln (x.y) = ln (x) + ln (y)

Loga (x/y) = Loga (x) - Loga (y) ln (x/y) = ln (x) – ln (y)

Loga (xy) = y. Loga (x) ln (xy) = y. ln (x)



Theorie + stappenplan + voorbeelden 3
$9.01
Get access to the full document:
Purchased by 43 students

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Reviews from verified buyers

Showing all 7 reviews
2 weeks ago

2 year ago

2 year ago

1 year ago

2 year ago

Normally I don't post reviews but this file made me pass the exam really well!

2 year ago

The roadmaps suddenly made all the difficult subject matter a lot clearer! It helped me a lot, so I succeeded myself! Thanks!

3 year ago

A very comprehensive summary of the theory and exercises! The self-made step-by-step plans help to solve the solution in a structured way! The step-by-step plans and examples suddenly make everything much easier!

4.6

7 reviews

5
5
4
1
3
1
2
0
1
0
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
studentmodeltraject Universiteit Antwerpen
Follow You need to be logged in order to follow users or courses
Sold
664
Member since
5 year
Number of followers
285
Documents
46
Last sold
3 days ago
Samenvattingen van supply chain management (kdg), TEW- toegepaste economische wetenschappen (Ua, Universiteit Antwerpen) of schakelprogramma (maritiem en logistiek management/ organisatie en management)

1. Ik verkoop samenvattingen die ik persoonlijk zelf heb gemaakt. De samenvattingen zijn steeds compleet! Ik heb ze namelijk zelf altijd gebruikt en tot nu toe alle examens gehaald. 2. Over mijn schooltraject: ik ben begonnen op Kdg met supply chain Management, hierna gestart aan het schakelprogramma van de Ua waarin ik de belangrijkste vakken van de richting TEW en SEW kreeg. 3. Momenteel ben ik bezig met mijn master organisatie en management. 4. In mijn samenvattingen gebruik ik kleur waardoor het leren makkelijker en sneller verloopt!

Read more Read less
4.8

196 reviews

5
167
4
19
3
8
2
2
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these revision notes.

Didn't get what you expected? Choose another document

No problem! You can straightaway pick a different document that better suits what you're after.

Pay as you like, start learning straight away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and smashed it. It really can be that simple.”

Alisha Student

Frequently asked questions