1: INLEIDING o Elektrochemische gradiënt functies
o Protongradiënt
- Oxidatieve fosforylering = eindstadium in energiemetabolisme
o Detail beschrijving van elektrontransport een
van anaerobe organismen
protongradiënt creëert
o In mitochondriën
o Betrokken eiwitten & stoffen
o O2 reductie tot H2O
o Protongradiënt: ATP-synthase activatie
o Met elektronendonerende elementen: NADH & FADH2
o Regeling & ontregeling van oxidatieve fosforylering
o Synthese van ATP
1: ANATOMIE VAN MITOCHONDRIËN
- Oxidatie fosforylering: 3 stappen
1) Flow e: tgv keten membraangebonden elektroncarriers - 2 membranen: binnenste & buitenste
- Eigen DNA & RNA
2) Vrije E van exergone e-flow - Transcriptie-translatiesysteem: ribosomen, eiwitten
a. koppelen aan endergone transport van protonen - Mobiele organellen: veranderen van plaats & vorm
door protonondoorlaatbare membraan - Buitenste mitochondriale membraan:
b. vrij E van brandstofoxidatie conserveren als o Transporteiwit porine aanwezig
transmembranaire elektrochemische potentiaal o Door lipidendubbellaag
o Zeef: doorlaatbaal kleine moleculen & ionen
3) Oplevering van vrije E voor synthese van ATP - Binnenste mitochondriale membraan:
a. Gekatalyseerd door membraaneiwittencomplex o Ondoorlaatbaar voor meeste ionen & H+
( ATP-synthase) tenzij pad voorzien
b. Koppelen protonflow aan fosforylering van ADP o Bevat:
1) Respiratoire elektronendragers: complex I -IV
2) ADP-ATP translocases
- Bespreekpunten: 3) ATP synthase
o Mitochondriale anatomie 4) Transporteiwitten: pyruvaat/ vetzuuringang
o Algemene strategie van oxidatieve fosforylering 5) Pompen
o Gevolgde weg van elektronen & protonen o Cristae = plooien & toename oppervlakte
1
, - Matrix: - Chemiosmotische kopelingshypothese
o Bevat mengsel van enzymen voor: = link tussen elektrontransport, protonpompen & ATP synthese
1) Aminozuren
Oorsprong & bestemming van e- die doorgegeven worden via ET-systeem
2) Pyruvaat
3) Vetzuren - Bestemming: energierijke e- aan ETketen > 3 eiwitcomplexen
4) Krebscyclus - Elk H+ pomp werking
5) Ribosomen, DNA, RNA,… - Doorgeven van e- tussen moleculen ( stijdengde redoxpot)
6) ATP,ADP, Pi, Mg2+, Ca2+, K+ o Vrijstelling van E
o Gebruiken om protonen buiten pompen
o Creëren van protongradiënt
2: MITOCHONDIRALE ATP-PRODUCTIE IN NOTENDOP
- Laatste acceptor van e-: O2 H2O vorming
- Ontstaan tgv symbiose ~ eukaryoot & bacterie
Algemene reactie in extreme gecondenseerde vorm in mitochondriën
membraangebonden ATP-synthesemechanisme
- 2 stappen: in membraan door eiwitten - oxidatie van NADH: E- vrijzetting
STADIUM 1 STADIUM 2 - Gebruikt voor fosforylatie van ADP tot ATP
* Elektronen stromen door ET keten * Terugstromen protonen door ATP- - Hoge-E-elektronen van NADH:
* Drijven protonpompen naar synthase o Langs ET keten
intermembranaire ruimte aan * aandrijven van ATP-synthese o + ½ O2 + H+ ~ vorming van NAD+ & H2O
* elektronen: afkomstig voeding * met elektrochemische gradiënt mee Gelijkenissen tussen mitochondriën & elektrische batterijen
doorgeven via reeks carriers = e- * door eiwitcomplex = synthase
transportketens ~ katalyseren: ADP + Pi ATP = grote productie van energie bij ET: verbinden aan eiwitten
* elektrontransfers: E ter beschikking * protonengradiënt ATP-synthese aandrijft
- Eiwitten:
activering pompen van H+
o e- transporteren
* gevolg: genereren van elektrochemische
o H+ pompen naar intermembranaire ruimte
gradiënt ( tegen in)
= vorm van opslag van energie
- Actief pompen van protonen 2 gevolgen:
o Krijgt protonengradiënt: verschil in pH door
concentratieverschil
2
o Protongradiënt
- Oxidatieve fosforylering = eindstadium in energiemetabolisme
o Detail beschrijving van elektrontransport een
van anaerobe organismen
protongradiënt creëert
o In mitochondriën
o Betrokken eiwitten & stoffen
o O2 reductie tot H2O
o Protongradiënt: ATP-synthase activatie
o Met elektronendonerende elementen: NADH & FADH2
o Regeling & ontregeling van oxidatieve fosforylering
o Synthese van ATP
1: ANATOMIE VAN MITOCHONDRIËN
- Oxidatie fosforylering: 3 stappen
1) Flow e: tgv keten membraangebonden elektroncarriers - 2 membranen: binnenste & buitenste
- Eigen DNA & RNA
2) Vrije E van exergone e-flow - Transcriptie-translatiesysteem: ribosomen, eiwitten
a. koppelen aan endergone transport van protonen - Mobiele organellen: veranderen van plaats & vorm
door protonondoorlaatbare membraan - Buitenste mitochondriale membraan:
b. vrij E van brandstofoxidatie conserveren als o Transporteiwit porine aanwezig
transmembranaire elektrochemische potentiaal o Door lipidendubbellaag
o Zeef: doorlaatbaal kleine moleculen & ionen
3) Oplevering van vrije E voor synthese van ATP - Binnenste mitochondriale membraan:
a. Gekatalyseerd door membraaneiwittencomplex o Ondoorlaatbaar voor meeste ionen & H+
( ATP-synthase) tenzij pad voorzien
b. Koppelen protonflow aan fosforylering van ADP o Bevat:
1) Respiratoire elektronendragers: complex I -IV
2) ADP-ATP translocases
- Bespreekpunten: 3) ATP synthase
o Mitochondriale anatomie 4) Transporteiwitten: pyruvaat/ vetzuuringang
o Algemene strategie van oxidatieve fosforylering 5) Pompen
o Gevolgde weg van elektronen & protonen o Cristae = plooien & toename oppervlakte
1
, - Matrix: - Chemiosmotische kopelingshypothese
o Bevat mengsel van enzymen voor: = link tussen elektrontransport, protonpompen & ATP synthese
1) Aminozuren
Oorsprong & bestemming van e- die doorgegeven worden via ET-systeem
2) Pyruvaat
3) Vetzuren - Bestemming: energierijke e- aan ETketen > 3 eiwitcomplexen
4) Krebscyclus - Elk H+ pomp werking
5) Ribosomen, DNA, RNA,… - Doorgeven van e- tussen moleculen ( stijdengde redoxpot)
6) ATP,ADP, Pi, Mg2+, Ca2+, K+ o Vrijstelling van E
o Gebruiken om protonen buiten pompen
o Creëren van protongradiënt
2: MITOCHONDIRALE ATP-PRODUCTIE IN NOTENDOP
- Laatste acceptor van e-: O2 H2O vorming
- Ontstaan tgv symbiose ~ eukaryoot & bacterie
Algemene reactie in extreme gecondenseerde vorm in mitochondriën
membraangebonden ATP-synthesemechanisme
- 2 stappen: in membraan door eiwitten - oxidatie van NADH: E- vrijzetting
STADIUM 1 STADIUM 2 - Gebruikt voor fosforylatie van ADP tot ATP
* Elektronen stromen door ET keten * Terugstromen protonen door ATP- - Hoge-E-elektronen van NADH:
* Drijven protonpompen naar synthase o Langs ET keten
intermembranaire ruimte aan * aandrijven van ATP-synthese o + ½ O2 + H+ ~ vorming van NAD+ & H2O
* elektronen: afkomstig voeding * met elektrochemische gradiënt mee Gelijkenissen tussen mitochondriën & elektrische batterijen
doorgeven via reeks carriers = e- * door eiwitcomplex = synthase
transportketens ~ katalyseren: ADP + Pi ATP = grote productie van energie bij ET: verbinden aan eiwitten
* elektrontransfers: E ter beschikking * protonengradiënt ATP-synthese aandrijft
- Eiwitten:
activering pompen van H+
o e- transporteren
* gevolg: genereren van elektrochemische
o H+ pompen naar intermembranaire ruimte
gradiënt ( tegen in)
= vorm van opslag van energie
- Actief pompen van protonen 2 gevolgen:
o Krijgt protonengradiënt: verschil in pH door
concentratieverschil
2