100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Data Science Summary + Key Concepts (more compact summary)

Rating
-
Sold
2
Pages
61
Uploaded on
22-06-2022
Written in
2021/2022

Data Science summary. I made this summary to learn for the Data Science. Based on the teaching material of Leiden University. A comprehensive summary + key concepts (an even more compact version)

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
June 22, 2022
Number of pages
61
Written in
2021/2022
Type
Summary

Subjects

Content preview

Comprehensive summary per lecture + Key concepts (Smaller
summary of summary)
Data Science lecture 1 5
Research Paradigms 5
Data Challenges 5
Application domain 5
Task definition questions 6
Supervised vs Unsupervised 6
Addressing data science problems: 7
Mean vs Median 7
Outliers 7
Regression 8
Simple linear regression 8
Multiple linear regression 8
Logistic Regression 9
Loss functions 9
Sigmoid 10

Lecture 2 11
Visualisation 11
Anscombe’s quartet 11
Visualisation Metaphors 11
Bad visualisation 12

Lecture 3 13
Supervised learning 13
Classification 13
Classification models 14
Vector space model 14
K-Nearest Neighbour (KNN) 14
Support vector machine(SVM) 15
Neural networks 16
Hidden layers 16
ReLU VS sigmoid 17
Single neurons 17
Cost functions 18
Gradient descent 18
Perceptrons 19
XOR problem 20
Feed forward networks 20
Training Neural nets 21

Lecture 4 22
Experiment setup 22

1
Jesse de Gans

, Hyper parameter tuning 22
Regression evaluation 22
Evaluation of rankings 22
Evaluation for classification 23
F-score 23
Classifier quality & analysis 23

Lecture 5 24
Network science 24
Network types 24
Real-world network properties 24
Network density 25
Degree 25
Components 25
Distance 25
Clustering coefficients 25
Centrality 26
Degree centrality 26
Closeness centrality 26
Betweenness centrality 26
Communities 27
Modularity maximisation 27

Lecture 6 28
Data collection 28
Using Existing labelled data 28
Create new labelled data 28
Inter-rater agreement 29
Interpretation of Cohen’s Kappa 29

Lecture 7 30
Data Preparation 30
Feature extraction 30
Dense vs Sparse data 30
Text Classification 31
Traditionally 31
Preprocessing: Raw text to features 32
Clean up and normalisation 32
Tokenization 32
Pre-processing with NLP tools 32
Feature creation 32
Image to matrix 33
Image feature extraction 33
Convolutional neural networks 33
Need to knows 34
Image preprocessing 34

2
Jesse de Gans

,Lecture 8 35
Choosing models and methods 35
Choosing supervised vs Unsupervised: 35
Choosing between classification clustering or regression: 35
Decide on features 35
Choosing the right estimator 35
Supervised Classification models 36
Transfer learning 36
Transfer learning for images 36
Transfer learning for text 36

Lecture 9 37
Feature normalisation 37
Scaling numerical features 37
Dimensionality reduction 37
PCA (Principal component Analysis) 38
Significance testing 38
Which test to use 38

Lecture 10 39
Natural Language processing 39
Text data challenges 39
Zipfs law 39
Bag-of-words model: Text as classification object 40
Words(terms) as features 40
Computing term weights (real valued) 40
Term frequency (tf) 40
Inverse document frequency (idf) 41
Tf-idf(term-frequency Inverse document frequency) 41
Term-document matrix 41
Words and polysemy 42
Word embeddings 42
Learning word embeddings 42
Neural language models 43
Application of transfer learning to image and text data 43

Lecture 11 44
Evaluation of classification 44
Evaluation for regression 44
Confusion matrices 44
Error analyses 45
Dimensionality reduction 46
Class imbalance 46
Machine learning 46
Hyper param optimization 47

3
Jesse de Gans

, Overfitting 47
Cross validation 47
Leave-one-out cross validation 48

Lecture 12 49
Big data 49
Responsible data science 49
Risks and opportunities 49
Explainable models 50

Key concepts: 51-61




4
Jesse de Gans

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
jessedegans Universiteit Leiden
Follow You need to be logged in order to follow users or courses
Sold
17
Member since
6 year
Number of followers
15
Documents
8
Last sold
1 year ago

3.5

4 reviews

5
1
4
1
3
1
2
1
1
0

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions