H8 LIMIETEN EN CONTINUÏTEIT
8.1 LIMIETEN
Informele limiet ‘steeds dichter’, ‘voldoende dicht naderen tot’
en ‘onbeperkt toe- of afnemen’ niet exact
gedefinieerd is
linkerlimiet lim f ( x )
x→ a
¿
rechterlimiet lim f ( x )
x→ a
¿
Verband tussen limiet, linkerlimiet en lim f ( x ) = b
x→ a
rechterlimiet
⇕
lim f ( x ) lim f ( x )
x→ a = x→ a =b
¿ ¿
8.2 LIMIETEN BEREKENEN
8.2.1 FUNDAMENTELE LIMIETEN
F(x) = c : lim
x→ a
f (x ) = c
F(x) = x : lim f ( x ) = a
x→ a
F(x) = 1/x : lim f ( x ) = 1/a met a≠0
x→ a
8.2.2 REKENREGELS VOOR EINDIGE LIMIETEN
Definitie eindige limieten Indien lim f ( x ) = b met b
x→ a
∈ R , dan noemen we lim f (x ) een eindige
x→ a
limiet
Rekenregels - De limiet van een som is de som van de
limieten
- De limiet van een verschil is het verschil
van de limieten
- De limiet van een product is het
product van de limieten
- De limiet van een veelvoud is het
veelvoud van de limiet
- De limiet van een quotiënt is het
quotiënt van de limieten
- De limiet van een macht met rationale
exponent is de macht van de limiet
De limiet van een som is de som van de limieten lim ¿ ¿ + g(x)) = lim f ( x ) + lim g ( x)
x→ a x→ a x→ a
: in symbolen
De limiet van een verschil is het verschil van de lim ¿ – g(x)) = lim f (x ) - lim g ( x)
x→ a x→ a x→ a
limieten : in symbolen
De limiet van een product is het product van de lim ¿ ¿ * g(x)) = c * lim g ( x)
x→ a x→ a
limieten : in symbolen
De limiet van een veelvoud is het veelvoud van lim (r∗f ( x)) = r* lim f (x )
x→ a x→ a
de limiet : in symbolen
, De limiet van een quotiënt is het quotiënt van lim f ( x)
f (x) x →a
de limieten : in symbolen lim = als lim g (x) ≠ 0
x→ a g(x ) lim g( x ) x→ a
x →a
De limiet van een macht met rationale lim ( f ( x ) ) = ( lim f ( x ))q (q∈Q 0 ¿ als
q
exponent is de macht van de limiet : in x→ a x →a
q
symbolen ( lim f ( x )) gedefineerd is
x →a
8.2.3 REKENREGELS VOOR ONEINDIGE LIMIETEN
Definitie oneindige limieten Is lim f ( x ) = + ∞ of lim f (x )= -∞ , dan noemen
x→ a x→ a
we lim f ( x ) een oneindige limiet
x→ a
Eerste rekenregel en symbolische notatie Als lim f ( x ) = + ∞ en lim g ( x) = + ∞ , dan is
x→ a x→ a
lim ( f ( x ) + g ( x )) = + ∞
x→ a
En lim ( f ( x )∗g ( x ) ) = + ∞
x→ a
(+∞ ¿+ (+∞ ) = +∞
(-∞ ) + (-∞ ) = -∞
(+∞ ¿- (-∞ ) = +∞
(-∞ ) – (+∞ ¿=¿ -∞
r + (+∞ ) = (+∞ ) + r = ∀r∈R +∞
r + (-∞ ) = (-∞ ) + r = ∀r∈R -∞
r – (+∞ ) = ∀r ∈R -∞
r – (-∞ ) = ∀r∈R +∞
√n +∞ = met n ∈ N 0 +∞
√n −∞ = met n ∈ N 0 -∞
(+ ∞)q = met q +∞
+¿ ¿
∈Q 0
(+∞ ) * (+∞ )= +∞
(-∞ ) * (-∞ ) = +∞
(+∞ ) * (-∞ ) = -∞
(-∞ ) * (+∞ ) = -∞
r * (+∞ ) = (+∞ ) * r = +∞
∀ r ∈ R+¿¿
0
r* (+∞ ) = (+∞ ) * r = -∞
∀ r ∈ R−¿0
¿
r * (-∞ ) = (-∞ ) * r = -∞
∀ r ∈ R+¿¿
0
r * (-∞ ) = (-∞ ) * r = +∞
∀ r ∈ R−¿0
¿
r r 0
= =∀ r ∈ R
+ ∞ −∞
+∞ +∞
=¿
r
∀ r ∈ R+¿¿
0
−∞ -∞
=¿
r
+¿¿
∀ r ∈ R0
8.1 LIMIETEN
Informele limiet ‘steeds dichter’, ‘voldoende dicht naderen tot’
en ‘onbeperkt toe- of afnemen’ niet exact
gedefinieerd is
linkerlimiet lim f ( x )
x→ a
¿
rechterlimiet lim f ( x )
x→ a
¿
Verband tussen limiet, linkerlimiet en lim f ( x ) = b
x→ a
rechterlimiet
⇕
lim f ( x ) lim f ( x )
x→ a = x→ a =b
¿ ¿
8.2 LIMIETEN BEREKENEN
8.2.1 FUNDAMENTELE LIMIETEN
F(x) = c : lim
x→ a
f (x ) = c
F(x) = x : lim f ( x ) = a
x→ a
F(x) = 1/x : lim f ( x ) = 1/a met a≠0
x→ a
8.2.2 REKENREGELS VOOR EINDIGE LIMIETEN
Definitie eindige limieten Indien lim f ( x ) = b met b
x→ a
∈ R , dan noemen we lim f (x ) een eindige
x→ a
limiet
Rekenregels - De limiet van een som is de som van de
limieten
- De limiet van een verschil is het verschil
van de limieten
- De limiet van een product is het
product van de limieten
- De limiet van een veelvoud is het
veelvoud van de limiet
- De limiet van een quotiënt is het
quotiënt van de limieten
- De limiet van een macht met rationale
exponent is de macht van de limiet
De limiet van een som is de som van de limieten lim ¿ ¿ + g(x)) = lim f ( x ) + lim g ( x)
x→ a x→ a x→ a
: in symbolen
De limiet van een verschil is het verschil van de lim ¿ – g(x)) = lim f (x ) - lim g ( x)
x→ a x→ a x→ a
limieten : in symbolen
De limiet van een product is het product van de lim ¿ ¿ * g(x)) = c * lim g ( x)
x→ a x→ a
limieten : in symbolen
De limiet van een veelvoud is het veelvoud van lim (r∗f ( x)) = r* lim f (x )
x→ a x→ a
de limiet : in symbolen
, De limiet van een quotiënt is het quotiënt van lim f ( x)
f (x) x →a
de limieten : in symbolen lim = als lim g (x) ≠ 0
x→ a g(x ) lim g( x ) x→ a
x →a
De limiet van een macht met rationale lim ( f ( x ) ) = ( lim f ( x ))q (q∈Q 0 ¿ als
q
exponent is de macht van de limiet : in x→ a x →a
q
symbolen ( lim f ( x )) gedefineerd is
x →a
8.2.3 REKENREGELS VOOR ONEINDIGE LIMIETEN
Definitie oneindige limieten Is lim f ( x ) = + ∞ of lim f (x )= -∞ , dan noemen
x→ a x→ a
we lim f ( x ) een oneindige limiet
x→ a
Eerste rekenregel en symbolische notatie Als lim f ( x ) = + ∞ en lim g ( x) = + ∞ , dan is
x→ a x→ a
lim ( f ( x ) + g ( x )) = + ∞
x→ a
En lim ( f ( x )∗g ( x ) ) = + ∞
x→ a
(+∞ ¿+ (+∞ ) = +∞
(-∞ ) + (-∞ ) = -∞
(+∞ ¿- (-∞ ) = +∞
(-∞ ) – (+∞ ¿=¿ -∞
r + (+∞ ) = (+∞ ) + r = ∀r∈R +∞
r + (-∞ ) = (-∞ ) + r = ∀r∈R -∞
r – (+∞ ) = ∀r ∈R -∞
r – (-∞ ) = ∀r∈R +∞
√n +∞ = met n ∈ N 0 +∞
√n −∞ = met n ∈ N 0 -∞
(+ ∞)q = met q +∞
+¿ ¿
∈Q 0
(+∞ ) * (+∞ )= +∞
(-∞ ) * (-∞ ) = +∞
(+∞ ) * (-∞ ) = -∞
(-∞ ) * (+∞ ) = -∞
r * (+∞ ) = (+∞ ) * r = +∞
∀ r ∈ R+¿¿
0
r* (+∞ ) = (+∞ ) * r = -∞
∀ r ∈ R−¿0
¿
r * (-∞ ) = (-∞ ) * r = -∞
∀ r ∈ R+¿¿
0
r * (-∞ ) = (-∞ ) * r = +∞
∀ r ∈ R−¿0
¿
r r 0
= =∀ r ∈ R
+ ∞ −∞
+∞ +∞
=¿
r
∀ r ∈ R+¿¿
0
−∞ -∞
=¿
r
+¿¿
∀ r ∈ R0