100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.6 TrustPilot
logo-home
Summary

Risk Insurance Summary Ch1-9

Rating
-
Sold
-
Pages
16
Uploaded on
11-06-2022
Written in
2021/2022

A complete summary of the book Modern Actuarial Risk Theory and the lecture notes on chapters 1-9. With definitions, theorems, etc.

Institution
Course










Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Study
Course

Document information

Summarized whole book?
No
Which chapters are summarized?
1 t/m 9
Uploaded on
June 11, 2022
Number of pages
16
Written in
2021/2022
Type
Summary

Subjects

Content preview

Risk Insurance summary
Carine Wildeboer
April 2022


Contents
1 Chapter 1, Utility Theory and Insurance 3
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Utility functions and their properties . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 Useful results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Implications for insurance business . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3.1 The policyholder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3.2 The insurance company . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3.3 When is insurance possible? . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Stop-loss reinsurance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Chapter 2, The Individual Risk Model 4
2.1 Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.1 Moment generating functions . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Other transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Mixed distributions and risks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.1 Mixed distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 Mixed random variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.3 Law of iterated expectation or tower rule . . . . . . . . . . . . . . . . . . . 5
2.3 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3.1 The rigid way . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3.2 The intuitive way . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3.3 The ultimate way . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Chapter 3, Collective Risk Models 6
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Collective risk model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Properties of compound Poisson distributions . . . . . . . . . . . . . . . . . . . . . 7
3.4 Individual versus collective risk model . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.4.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.5 Advanced example: Maximum claim size . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Chapter 4, Ruin Theory 8
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2 Properties of the Poisson process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.3 Characterization of the ruin process . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.4 Lundberg’s exponential upper bound . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.5 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.5.1 Ruin model with reinsurance . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.5.2 Discrete-time ruin model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9




1

,5 Chapter 5, Premium 10
5.1 Premium calculation from top-down: a case study . . . . . . . . . . . . . . . . . . 10
5.1.1 Basic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.1.2 Setting premium with the ruin probability . . . . . . . . . . . . . . . . . . . 10
5.1.3 Including dividend payments . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.1.4 Selecting initial investment . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.1.5 Dividing premium to individual policy . . . . . . . . . . . . . . . . . . . . . 11
5.2 Premium principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.2.1 Premium properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.3 Coinsurance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

6 Chapter 6, Bonus-Malus Systems 12
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6.2 Example of bonus-malus system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6.3 Loimaranta efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6.4 Hunger for bonus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

7 Chapter 7, Ordering of Risks 13
7.1 Stochastic order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
7.1.1 Definitions and properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
7.1.2 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
7.2 Thicker tailed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
7.3 Stop-loss order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
7.3.1 Definitions and properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
7.3.2 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
7.3.3 Relations with other orders . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
7.4 Exponential order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
7.4.1 Definitions and properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
7.4.2 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
7.4.3 Relations with other orders . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
7.5 Relation between ordering concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
7.6 Implications for the ordering concepts . . . . . . . . . . . . . . . . . . . . . . . . . 15

8 Chapter 8 15

9 Chapter 9, Generalized Linear Models in Insurance 15
9.1 Linear Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
9.2 Generalized linear model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
9.3 Poisson GLM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
9.4 Poisson GLM with exposure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
9.5 GLM estimation in R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16




2

, 1 Chapter 1, Utility Theory and Insurance
1.1 Introduction
St. Petersburg Paradox For price P, enter game. n trials, gain is 2n . Expected gain:
P ∞ n n
n=1 2 (1/2) = ∞. But, unless P is small only a few will enter game.


1.2 Utility functions and their properties
E[(u(w − X)]
• Property 1: Non-decreasing functions: u′ (w) ≥ 0. Marginal utility is non-negative.

• Property 2: Concave (risk-averse agents): u′′ (w) ≤ 0 or convex (risk-loving): u′′ (w) ≥ 0
Remark: E(u(w − X)) ≤ E(u(w − Y )) ⇐⇒
E(a ∗ u(w − X) + b) ≤ E(a ∗ u(w − Y ) + b)


1.2.1 Useful results
Risk aversion coefficient: r(w) of utility func. u(·) at wealth w is:
′′
(w)
r(w) = − uu′ (w)

Jensen’s inequality: If v(·) is convex: E(v(X)) ≥ v(E(X))
If v(·) is concave: E(v(X0) ≤ v(E(X)).

1.3 Implications for insurance business
Policyholders: risk averse, insurance company: risk averse or neutral.

1.3.1 The policyholder
Utility function u(·), is concave or linear and increasing. Buy insurance against loss X for premium
p. Then expected loss: E(X) = µ < ∞. If you buy, utility: u(w − P ). If you do not buy, utility:
E(u(w − X)). By Jensen:
E(u(w − X)) ≤ u(E(w − X)) = u(w − E(X)) = u(w − µ).
Max. premium acceptable: u(w − P + ) = E(u(w − X)) ⇒ P + ≥ µ

1.3.2 The insurance company
Utility function U (·), is concave or linear and increasing. P − : minimum premium company wants
to receive. By Jensen:
U (W ) = E(U (W + P − − X)) ≤ U (E(W + P − − X)) = U (W + P − − µ) ⇒ P − ≥ µ

1.3.3 When is insurance possible?
If P + ≥ P − ≥ µ

1.4 Stop-loss reinsurance
When claims are too big for an insurance company it transfers the risk to a reinsurance company.

Stop-loss reinsurance: For a loss X the payment by the reinsurer to the insurer is:
(
X − d if X > d
(X − d)+ = max X − d, 0 =
0 if X ≤ d




3

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
carinewildeboer Rijksuniversiteit Groningen
Follow You need to be logged in order to follow users or courses
Sold
20
Member since
7 year
Number of followers
17
Documents
9
Last sold
5 months ago

4.0

5 reviews

5
1
4
3
3
1
2
0
1
0

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions