100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.6 TrustPilot
logo-home
Summary

Samenvatting fysica: golven en trillingen 1BLC

Rating
4.3
(3)
Sold
2
Pages
61
Uploaded on
10-06-2022
Written in
2021/2022

Een gedetailleerde samenvatting van het vak fysica: golven en trillingen gegeven door Julie Cautereels in 1BLC - ik behaalde een 13/20 in eerste zit met deze samenvatting! Opmerking 1: Zie dat bij het afdrukken van de samenvatting je de pagina’s goe uitlijnt! Opmerking 2: Als je het document hebt gekocht en de kwaliteit van het document is slecht, dm mij!

Show more Read less
Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
June 10, 2022
Number of pages
61
Written in
2021/2022
Type
Summary

Subjects

Content preview

Golven en
door Noor Vinoelst
trillingen

, HOOH NKO GONIOMETRISCHE FUNCTIES :




0.1 GONIOMETRISCHE CIRKEL
.




in een driehoek cirkel ( 2=1 )
rechthoekige : in een
goniometrische :




Sin ( ✗ ) = 0 Sin ✗ = YA = YA
5 1


Cos ( x A ✗A
) =
S Cos ✗ = = ✗A

S 1
0
0 Y n Y Y
ton ( x )
n n
=


A
)
x A Ao . . . . . . . . . .

YA
YA . . . . . . - - - - -
• :


Cot ( x A A :
) =


Ï
0 is
✗a
'
× ✗
a
'
×
A
À y
:
A
0 . . . . . . . . .


YA



de
de
goniometrische cirkel laat toe de sinus & cosinus te ontkoppelen ù hun definities als verhoudingen Ù
z den
in driehoek
een
rechthoekige driehoek is De sinus in een
rechthoekige kan nooit negatief z n


0.1 SINUSFUNCTIE
.




sinus kan ook beschouwd worden als functies Ù een
veranderl ke × :
f- (x ) = sin (x) = sin ( ✗ rad ) Sint 2) = Sin ( 2rad )

= Sin ( 20 )

'
domein : IR of
beeld : [ -1,1 ]

periode : 21T




1 } 5
https://commons.wikimedia.org/wiki/File:Circle_cos_sin.gif
. . •


↳ visuele interpretatie




;




03 GONIOMETRISCHE VERGEL KINGEN
.




svplementaire hoeken ( ✗ en 1T -
× ) hebben dezelfde sinus waarde :
Sin ( 1T -
× ) = Sin Ix )




Sin ( x ) = Sin ( X )

f) ✗ =
✗ t k . 21T

= IT -
✗ + k . 21T


' een
geheel getal

1
ijij ijIJIJ

, goniometrische functies
Als
je in verse
gebruikt op je ZRM
kr g je slechts 1
oplossing .
De andere
oplossingen moet je zelf

vinden !
^
voorbeeld
12 / 21 ) IT 1T k te 11
-


: Sin ( x ) = ZRM :
sin = is × -
- t . 21T ~ = 0 ns ✗ =



g 6 6
k =
1 ns ✗ = 131T
OF . . .
6


✗ IT IT k 21T = 51T + k 21T ~ te = Ons ✗ 51T
= + =
-
. .




6 6
6
te = 1 ns ✗ = 171T

. . .
6

^ T
'
voorbeeld ( 2X IT )
f- ( f)
-



Sin ZRM Sin 2x
GI k 21T te 71T
~ ~
: - = : = -
IT = + .
= 0 u ✗ =

6 12
E) 2x = 71T + k . ZIT k = 1 ~ × =
191T
6 12
. . .




E) ✗ = 71T + KIT
12

OF




2X -
IT = IT - IT + k 21T.
~
te = Ons ✗ =
111T
6 12
E) 2 ✗ = 111T + k .
21T te = 1 ~ ✗ =
231T

6 12
. . .




E) ✗ = 111T + k.IT
12




1
ij

, D. 4. OEFENINGEN




^ ^
( 1/2 ) I
-



Sin ( 0,3 )
-


ZRM : =
0,5235987756 =
ZRM : Sin =
0,304692654
6
✗ = IT + k . 21T
6

=
0,3047 t k . 21T
51T
4
✗ IT IT + k 21T = t k 21T
1,2188
=
3047.4 k 81T
-

. .

E) ✗ = 0
,
t k . 81T = t .




6 6


✗ =
IT -

0,3047 + k . 81T
^ 4
( 0,6 )
-



ZRM : Sin =
0,6435011088 E) ✗ = 11,3476 + k . 81T



✗ =
0,6435 + k .
21T

^
4. ZIT ( O)
-



✗ = IT -

0,6435 + = 2,4981 t 4. ZIT ZRM : Sin =
0




2X = KIT
^
( t) IT KIT
-



ZRM : Sin =
1,570796327 = F) ✗ =


2 2



k

§ 21T
= + .




^ T
( ) 1,570796327
-



ZRM : Sin t = =

2
✗ = IT -
IT + k .
21T = t k . 21T
2
✗ IT
=
+ 4. ZIT
2 2
E) ✗ = IT + K 41T
.



^
( -1 ) 1,570796327 IT
-



ZRM : Sin = -
= -




2

IT
[ k
= -
+ 21T
2
.




✗ = -
IT + k 21T
E) b. 41T
.


✗ = IT +
2


✗ = IT - IT + k .
21T = IT + k .
21T

2 2
^
( ) IT
-



ZRM : Sin -1 = -

1,570796327 = -




2


^
( O)
-



ZRM : Sin = 0
4 ✗ = -
IT + 4. ZIT
?
E) ✗ = -1T + k .




✗ = k.IT 8 2


4× = IT -11T + b. ZIT
2
E) ✗ = 31T t k.IT
8 2

^
( 0,6 ) 0,6435011088
-



ZRM : Sin =




3 ✗ =
0,6435 + k . 21T

F) ✗ =
0,6435 + 6. ZIT =
0,2145 t k .
21T
3 3
3

3 ✗ = IT -


0,6435 + k . 21T


E) ✗ =
2,4981 t k .
21T = 0 , 8327 t k .
21T
3
3 3




✗ =
✗ + k . 21T

= IT -
✗ + k . 21T
$7.80
Get access to the full document:
Purchased by 2 students

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached


Also available in package deal

Reviews from verified buyers

Showing all 3 reviews
10 months ago

10 months ago

2 year ago

4.3

3 reviews

5
1
4
2
3
0
2
0
1
0
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
StudentBLC Universiteit Antwerpen
Follow You need to be logged in order to follow users or courses
Sold
101
Member since
5 year
Number of followers
34
Documents
20
Last sold
4 days ago

4.5

24 reviews

5
12
4
11
3
1
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions