100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Samenvatting Formularium wiskunde

Rating
-
Sold
1
Pages
7
Uploaded on
09-06-2022
Written in
2021/2022

Formularium wiskunde biomedische laboratoriumtechnologie

Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
June 9, 2022
Number of pages
7
Written in
2021/2022
Type
Summary

Subjects

Content preview

FORMULARIUM
1 GONIOMETRIE & DRIEHOEKSMETING

Goniometrie

360° = 2 π (rad)

4 kwadranten:
π
- I: hoeken tss 0 en
2
π
- II: hoeken tss en π
2

- III: hoeken tss π en
2

- IV: hoeken tss en 2 π
2


Goniometrische getallen

sin α
tan α =
cos α
1 cos α
cot α = =
tan α sin α
1
sec α =
cos α
1
cosec α =
sin α


sin2 α + cos2 α = 1
tan2 α + 1 = 1/cos2 α = sec2 α als cos2 α ≠ 0
1 + cot2 α = 1/sin2 α = cosec2 α als sin2 α ≠ 0

Merkwaardige producten
(a + b).(a – b) = a2 – b2
(a +/- b)2 = a2 +/- 2ab + b2
(a + b + c)2 = a2 + b2 + c2 + 2ab + 2ac + 2bc
(a +/- b)3 = a3 +/- 3a2b + 3ab2 + b2
(a – b).(a2 + ab + b2 ) = a3 + b3
(a + b).(a2 - ab + b2) = a3 + b3

, Goniometrische formules
Gelijke hoeken: dezelfde goniometrische getallen, beeldpunten vallen samen
β = α + 2 kπ of β = α + k.360° met k ∈ Z

sin (α + 2 kπ) = sin α
cos (α + 2 kπ) = cos α
tan (α + 2 kπ) = tan α
cotan (α + 2 kπ) = cotan α
sec (α + 2 kπ) = sec α

Tegengestelde hoeken: α en -α, beeldpunten = spiegelbeeld tov x-as
cos(−α) = cos α
sin(−α) = − sin α
tan(−α) = − tan α
cotan (−α) = − cotan α


Supplementaire hoeken: α + β = π + 2 kπ, p en q = spiegelbeeld tov y-as
sin(π − α) = sin α
cos(π − α) = − cos α
tan(π − α) = − tan α
cotan (π − α) = − cotan α




Antisupplementaire hoeken: β - α = π + 2 kπ, p en q = spiegelbeeld tov 0,0
sin(α±π) = − sin α
cos(α±π) = − cos α
tan(α±π) = tan α
cotan(α±π) = cotan α



π
Complementaire hoeken: α + β = + 2 kπ, p en q = spiegelbeeld tov 1ste bissectrice
2
π
sin ( −α )= cos α
2

π
cos ( −α )= sin α
2

π
tan ( −α )= cotan α
2
$6.59
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
laborant1234
4.0
(1)

Get to know the seller

Seller avatar
laborant1234 Vrije Universiteit Brussel
Follow You need to be logged in order to follow users or courses
Sold
10
Member since
3 year
Number of followers
6
Documents
5
Last sold
1 month ago

4.0

1 reviews

5
0
4
1
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions