100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

Biochemistry: Mod 1

Rating
-
Sold
-
Pages
40
Grade
A+
Uploaded on
29-05-2022
Written in
2021/2022

• DNA = phosphate + deoxyribose sugar + A/T/C/G o Contains two strands. The strands are antiparallel (opposite each other). o 5’ → 3’ 3’ ← 5’ • RNA = phosphate + ribose sugar + A/U/C/G o Single strand, can fold back onto itself and form pairs between itself (stem‐loop). • Each nucleic acid is made up of polymers (many monomers) that are called nucleotides. o Nucleotides contain one or more phosphates, a five‐carbon sugar, and a nitrogen base. o Nucleotides are always made in the 5’ to 3’ direction. o 5 is always the beginning of the strand, 3 is the end where nucleotides are added. • DNA organization: DNA is wrapped around proteins called histones → nucleosome → chromatin fiber→ chromosomes • Steps to the central dogma: o Coding DNA → template DNA → mRNA → tRNA (amino acid) o DNA → transcribed to mRNA → translated to protein o Each step is complementary (opposite) to the previous step, but if you skip a step it will be identical to the previous step. o Example  1. Coding DNA strand 5’ AAA TTT GGG CCC 3’  2. Template DNA strand 3’ TTT AAA CCC GGG 5’  3. mRNA 5’ AAA UUU GGG CCC 3’  4. tRNA Lys Phe Gly Pro • Pairing: o DNA: A → T o RNA: A → U • DNA replication: o Because DNA is a double helix, one strand can be separated and serve as a template for synthesis of a new strand. o Semi‐conservative: each copy of DNA contains a template strand and a new strand. o Steps of replication: o 1. The DNA must be separated, creating a replication fork. This is done by helicase. o 2. Primase attaches an RNA primer, where the replication is to start. o 3. DNA polymerase adds bases to the remaining of the strand until it reaches a stop codon. This is done in fragments, called okazaki fragments. • If an error is detected, it removes the nucleotides and replaces them with correct ones, known as exonuclease. o Exonuclease removes all of the RNA primers, and DNA polymerase fills in those gaps. o DNA ligase seals the two strands forming a double helix. • DNA → transcribed → mRNA → translated → protein • Transcription occurs in the nucleus: o Initiation: RNA polymerase binds to a sequence of DNA called the promoter, found near the beginning of a gene. Each gene has its own promoter. Once bound, RNA polymerase separates the DNA strands, providing the single‐stranded template needed for transcription. o Elongation: One strand of DNA, the template strand, acts as a template for RNA polymerase. As it "reads" this template one base at a time, the polymerase builds an RNA molecule out of complementary nucleotides, making a chain that grows from 5' to 3'. The RNA transcript carries the same information as the non‐template (coding) strand of DNA, but it contains the base uracil (U) instead of thymine (T). o Termination. Sequences called terminators signal that the RNA transcript is complete. Once they are transcribed, they cause the transcript to be released from the RNA polymerase. o Pre‐mRNA must go through extra processing before it can direct translation. • They must have their ends modified, by addition of a 5' cap (at the beginning) and 3' poly‐A tail (at the end). • Pre‐mRNAs must also undergo splicing. In this process, parts of the pre‐mRNA (called introns) are chopped out, and the remaining pieces (called exons) are stuck back together. • Translation occurs in the cytoplasm: o Initiation: The ribosome assembles around the mRNA to be read and tRNA brings in its perspective protein, decoding 3 bases at a time, beginning with the start codon, AUG. o These 3 base pairs of mRNA are called codons. The mRNA base pairs are complementary to the base pairs of the tRNA, called anticodons. o Elongation: The amino acid chain gets longer. The mRNA is read one codon at a time, and the amino acid matching each codon is added to a growing protein chain. When the complementary pairs are formed, they are added to the protein chain by peptide bonds, the result is polypeptides. o Termination: The finished polypeptide chain is released when a stop codon (UAG, UAA, or UGA) enters the ribosome. • Gene regulation o Promotor sites: can be turned off or on, enabling or disabling a gene from being replicated. o Alternative splicing: Exons are used to code for protein, introns are clipped out. The order of exons can determine different mature mRNA strands which result in different proteins. o Epigenetics: involves packaging of DNA. DNA is round around histones. These packages are called nucleosomes. How tightly packed they are determines whether or not the gene is on or off. o Loosely packed = transcription possible. o Tightly packed = transcription impeded. o Modifications determine how tightly/loosely packed they are. Many of these modifications are determined by environment/diet.

Show more Read less
Institution
Biochemistry: Mod 1
Course
Biochemistry: Mod 1











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Biochemistry: Mod 1
Course
Biochemistry: Mod 1

Document information

Uploaded on
May 29, 2022
Number of pages
40
Written in
2021/2022
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
NursesHub Grand Canyon University
View profile
Follow You need to be logged in order to follow users or courses
Sold
1125
Member since
5 year
Number of followers
692
Documents
2316
Last sold
3 weeks ago

4.7

672 reviews

5
560
4
65
3
23
2
6
1
18

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions