100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary Mathematics 114

Rating
-
Sold
4
Pages
32
Uploaded on
17-05-2022
Written in
2021/2022

A summary of all the concepts covered in the semester. It includes all the formulas, rules and proofs necessary to understand the concepts covered in the module.

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Course

Document information

Summarized whole book?
No
Which chapters are summarized?
Semester 1
Uploaded on
May 17, 2022
Number of pages
32
Written in
2021/2022
Type
Summary

Subjects

Content preview

WEEK ONE
NUMBERS
Natural numbers:
- Positive whole numbers 1, 2, 3, …
Integers:
- Whole numbers -1, 0, 1, …
Rational numbers:
- Ratios of integers with non-zero denominator.
!
- Numbers of the form " where both n and m are integers, and m is non-zero integer.
Real numbers:
- All numbers on number line, including numbers like 𝜋 and √2.

COORDINATE GEOMETRY AND LINES
Distance formula:
$(𝑥# − 𝑥$ )# + (𝑦# − 𝑦$ )#
Gradient / slope:
%! & %"
(! & ("
Point-slope form of a line:
y - 𝑦$ = m(x - 𝑥$ )
y = mx + c
slop-intercept form of straight line:
Ax + Bx + C = 0, where A ≠ 0 and B ≠ 0

Two lines with gradients 𝑚$ and 𝑚# respectively, are parallel if 𝑚$ = 𝑚# , and are
&$
perpendicular if 𝑚$ 𝑚# = -1, or equivalently, 𝑚$ = " , provided 𝑚$ ≠ 0 and 𝑚# ≠ 0.
!



INEQUALITIES
Rules for inequalities:
1. Exactly one of the following is true: a < b, a = b, b < a
2. If a < b and b < c, then a < c
3. If a < b, then a + c < b + c
4. If a < b and c > 0, then ac < bc
5. If a < b and c < d, then a + c < b + d
6. If a < b and c < 0, then ac > bc
$ $
7. If 0 < a < b, then ) > *

For real numbers a, b, c and d:
1. If a ≤ b and b ≤ c, then a ≤ c
2. If a ≤ b, then a + c ≤ b + c
3. If a ≤ b and c ≤ d, then a + c ≤ b + d
4. If a ≤ b and c ≥ 0, then ac ≤ bc
5. If a ≤ b and c ≤ 0, then ac ≥ bc
$ $
6. If 0 < a ≤ b, then ) ≥ *


ABSOLUTE VALUE
𝑎 𝑖𝑓 𝑎 ≥ 0
|a| = 0
−𝑎 𝑖𝑓 𝑎 < 0
Which means that |a| is defined to be a when a ≥ 0 and is defined to be -a when a < 0.

,Properties of absolute values:
For all a, b 𝜖 R and n 𝜖 Z:
1. √𝑎# = |a|
2. |ab| = |a||b|
) |)|
3. | | = when b ≠ 0
* |*|
4. |an| = |a|n
5. If a > 0 then |x| = a if x = a or x = -a
6. |x| < a if -a < x < a
7. |x| > a if x > a or x < -a
8. |x| ≤ a if -a ≤ x ≤ a
9. |x| ≥ a if x ≥ a or x ≤ -a
10. |a + b| ≤ |a| + |b| this is the triangle identity

Proofs for triangle identity:
i) We have:
-|a| ≤ a ≤ |a|
-|b| ≤ b ≤ |b|
Hence, adding these two identities we get
-|a| + -|b| ≤ a + b ≤ |a| + |b|
⟺ - (|a| + |b|) ≤ a + b ≤ |a| + |b|
⟺ |a + b| ≤ |a| + |b|
ii) Since:
|a + b|2 = (a + b)2 = a2 + 2ab + b2
And
(|a| + |b|)2 = |a|2 + 2|a||b| + |b|2 = a2 + 2|ab| + b2
It follows that
(|a| + |b|)2 - |a + b|2 = 2|ab| - 2ab = 2(|ab| - ab)
And hence since |ab| ≥ ab we have that
(|a| + |b| - |a + b|)(|a| + |b| + |a + b|) = (|a| + |b|)2 - |a + b|2 ≥ 0
Therefore since (|a| + |b| + |a + b|) > 0; unless a = b = 0 (in which case the
identity is trivially true), it follows that
|a| + |b| - |a + b| ≥ 0
And hence that
|a + b| ≤ |a| + |b|

ANGLES
Use radians [rad] as unit for angles.
Relationship between radians and degrees is given by equation 180° = 𝜋rad.
,
It follows that an angle 𝜃 in degrees corresponds to 𝜃 rad in radians while an angle 𝜙 in
$-.
$-.°
radians corresponds to 𝜙 , 0)1 in degrees.
Note: when write an angle in radians we usually leave out the unit.
Conversion of some common angles.




TRIG FUNCTIONS
23345678 ;1<)=8!7
Sin 𝜃 = 9%3478!:58 Cot 𝜃 = 23345678
;1<)=8!7
Cos 𝜃 = 9%3478!:58
23345678
Tan 𝜃 = ;1<)=8!7
9%3478!:58
Sec 𝜃 =
;1<)=8!7
9%3478!:58
Csc 𝜃 =
23345678

,TRIG IDENTITIES
$
Csc 𝜃 = >?@ A
$
Sec 𝜃 = BC> A
$
Cot 𝜃 = DE@ A
>?@ A
Tan 𝜃 =
BC> A
BC> A
Cot 𝜃 = >?@ A


Sin2 𝜃 + cos2 𝜃 = 1
Tan2 𝜃 + 1 = sec2 𝜃
1 + cot2 𝜃 = csc2 𝜃

EVEN AND ODD IDENTITES
Sin(-𝜃) = -sin(𝜃)
Cos(-𝜃) = cos(𝜃)

PERIODIC IDENTITES
Since 𝜋 represents one full rotation around a circle we have:
Sin (𝜃 + 2𝜋) = sin(𝜃)
Cos(𝜃 + 2𝜋) = cos(𝜃)

ADDITION AND SUBTRACTION FORMULAS




DOUBLE-ANGLE FORMULAS




HALF-ANGLE FORMULAS




PRODUCT FORMULAS

, GRAPHS OF TRIG FUNCTIONS




sec(x)

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
hollymadison Stellenbosch University
Follow You need to be logged in order to follow users or courses
Sold
152
Member since
4 year
Number of followers
103
Documents
0
Last sold
7 months ago

4.7

20 reviews

5
14
4
6
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions