Candidate surname Other names
Centre Number Candidate Number
Pearson Edexcel
Level 3 GCE
Time 1 hour 30 minutes
Paper
reference 9FM0/01
Further Mathematics
Advanced
PAPER 1: Core Pure Mathematics 1
You must have: Total Marks
Mathematical Formulae and Statistical Tables (Green), calculator
Candidates may use any calculator permitted by Pearson regulations.
Calculators must not have the facility for algebraic manipulation,
differentiation and integration, or have retrievable mathematical formulae
stored in them.
Instructions
•• Use black ink or ball-point pen.
If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
• Fill in the boxes at the top of this page with your name,
centre number and candidate number.
• labelled.
Answer all questions and ensure that your answers to parts of questions are clearly
• Answer the questions in the spaces provided
– there may be more space than you need.
• You should show sufficient working to make your methods clear.
Answers without working may not gain full credit.
•Information
Inexact answers should be given to three significant figures unless otherwise stated.
•• AThere
booklet ‘Mathematical Formulae and Statistical Tables’ is provided.
are 9 questions in this question paper. The total mark for this paper is 75.
• The marks for each question are shown in brackets
– use this as a guide as to how much time to spend on each question.
Advice
•• Read each question carefully before you start to answer it.
Try to answer every question.
•• Check your answers if you have time at the end.
Good luck with your examination.
Turn over
*P66796A0136*
P66796A
©2021 Pearson Education Ltd.
1/1/1/1/1/
,1. The transformation P is an enlargement, centre the origin, with scale factor k, where k > 0
The transformation Q is a rotation through angle θ degrees anticlockwise about the origin.
The transformation P followed by the transformation Q is represented by the matrix
−4 −4 3
M=
4 3 −4
(a) Determine
(i) the value of k,
(ii) the smallest value of θ
(4)
A square S has vertices at the points with coordinates (0, 0), (a, –a), (2a, 0) and (a, a)
where a is a constant.
The square S is transformed to the square S′ by the transformation represented by M.
(b) Determine, in terms of a, the area of S′
(2)
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
2
*P66796A0236*
,Question 1 continued
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
3
*P66796A0336* Turn over
, Question 1 continued
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
4
*P66796A0436*