100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

Mathematical Methods in the Physical Sciences, Boas - Solutions, summaries, and outlines. 2022 updated

Rating
-
Sold
-
Pages
71
Grade
A+
Uploaded on
16-04-2022
Written in
2021/2022

Description: INCLUDES Some or all of the following - Supports different editions ( newer and older) - Answers to problems & Exercises. in addition to cases - Outlines and summary - Faculty Approved answers. - Covers ALL chapters.

Show more Read less











Whoops! We can’t load your doc right now. Try again or contact support.

Document information

Uploaded on
April 16, 2022
Number of pages
71
Written in
2021/2022
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

Chapter 1


1.1 (2/3)10 = 0.0173 yd; 6(2/3)10 = 0.104 yd (compared to a total of 5 yd)
1.3 5/9 1.4 9/11 1.5 7/12
1.6 11/18 1.7 5/27 1.8 25/36
1.9 6/7 1.10 15/26 1.11 19/28
1.13 $1646.99 1.15 Blank area = 1
1.16 At x = 1: 1/(1 + r); at x = 0: r/(1 + r); maximum escape at x = 0 is 1/2.

2.1 1 2.2 1/2 2.3 0
2.4 ∞ 2.5 0 2.6 ∞
2.7 e2 2.8 0 2.9 1

4.1 an = 1/2n → 0; Sn = 1 − 1/2n → 1; Rn = 1/2n → 0
4.2 an = 1/5n−1 → 0; Sn = (5/4)(1 − 1/5n ) → 5/4; Rn = 1/(4 · 5n−1 ) → 0
4.3 an = (−1/2)n−1 → 0; Sn = (2/3)[1 − (−1/2)n ] → 2/3; Rn = (2/3)(−1/2)n → 0
4.4 an = 1/3n → 0; Sn = (1/2)(1 − 1/3n ) → 1/2; Rn = 1/(2 · 3n ) → 0
4.5 an = (3/4)n−1 → 0; Sn = 4[1 − (3/4)n ] → 4; Rn = 4(3/4)n → 0
1 1 1
4.6 an = → 0; Sn = 1 − → 1; Rn = →0
n(n + 1) n+1 n+1
(−1)n+1 (−1)n
 
1 1
4.7 an = (−1)n+1 + → 0 ; Sn = 1 + → 1; Rn = →0
n n+1 n+1 n+1

5.1 D 5.2 Test further 5.3 Test further
5.4 D 5.5 D 5.6 Test further
5.7 Test further 5.8 Test further
5.9 D 5.10 D

6.5 (a) D 6.5 (b) D
R∞
Note: In the following answers, I= an dn; ρ = test ratio.
6.7 D, I = ∞ 6.8 D, I = ∞ 6.9 C, I = 0
6.10 C, I = π/6 6.11 C, I = 0 6.12 C, I = 0
6.13 D, I = ∞ 6.14 D, I = ∞ 6.18 D, ρ = 2
6.19 C, ρ = 3/4 6.20 C, ρ = 0 6.21 D, ρ = 5/4
6.22 C, ρ = 0 6.23 D, ρ = ∞ 6.24 D, ρ = 9/8
6.25 C, ρ = 0 6.26 C, ρ = (e/3)3 6.27 D, ρ =P100
6.28 C, ρ =P 4/27 6.29 D, ρ =P2 6.31 D, cf. P n−1
6.32 D, cf. n−1 6.33 C, cf. 2−n 6.34 C, cf. n−2
P −2 P −1/2
6.35 C, cf. n 6.36 D, cf. n




1

,Chapter 1 2


7.1 C 7.2 D 7.3 C 7.4 C
7.5 C 7.6 D 7.7 C 7.8 C
P −1
9.1 D, cf. n 9.2 D, an 6→ 0 P −1
9.3 C, I =P0 9.4 D, I = ∞, or cf. n
9.5 C, cf. n−2 9.6 C, ρ = 1/4
9.7 D, ρ = 4/3 9.8 C, ρ = 1/5
9.9 D, ρ = e 9.10 D, an 6→
P 0 −2
D, I = ∞, or cf.P n−1
P
9.11 9.12 C, cf. n
9.13 C, I = 0, or cf. n−2 9.14 C, alt.Pser.
9.15 D, ρ = ∞, an 6→ 0 9.16 C, cf. n−2
9.17 C, ρ = 1/27 9.18 C, alt. ser.
9.19 C 9.20 C
9.21 C, ρ = 1/2
9.22 (a) C (b) D (c) k > e

10.1 |x| < √ 1 10.2 |x| < 3/2 10.3 |x| ≤ 1
10.4 |x| ≤ 2 10.5 All x 10.6 All x
10.7 −1 ≤ x < 1 10.8 −1 < x ≤ 1 10.9 |x| < 1
10.10 |x| ≤ 1 10.11 −5 ≤ x < 5 10.12 |x| < 1/2
10.13 −1 < x ≤ 1 10.14 |x| < 3 10.15 −1 < x < 5
10.16 −1 < x < 3 10.17 −2 < x ≤ 0 10.18 −3/4 ≤ x ≤ −1/4
10.19 |x| < 3 10.20 All x 10.21 0 ≤ x √≤1
10.22 No x 10.23 x > 2 or x < −4 10.24 |x| < 5/2
10.25 nπ − π/6 < x < nπ + π/6

(−1)n (2n − 1)!!
   
−1/2 −1/2
13.4 = 1; =
0 n (2n)!!
Answers to part (b), Problems 5 to 19:
∞ n+2 ∞  
X x X 1/2 n+1
13.5 − 13.6 x (see Example 2)
1
n 0
n
∞ ∞ 
(−1)n x2n

X X −1/2
13.7 13.8 (−x2 )n (see Problem 13.4)
0
(2n + 1)! 0
n
∞ ∞
X X (−1)n x4n+2
13.9 1 + 2 xn 13.10
1 0
(2n + 1)!
∞ n n ∞
X (−1) x X (−1)n x4n+1
13.11 13.12
0
(2n + 1)! 0
(2n)!(4n + 1)
∞ n 2n+1 ∞
X (−1) x X x2n+1
13.13 13.14
0
n!(2n + 1) 0
2n + 1

x2n+1

X −1/2 
13.15 (−1)n
0
n 2n + 1
∞ 2n ∞
X x X xn
13.16 13.17 2
0
(2n)! n
oddn

X (−1)n x2n+1 ∞
X −1/2 x2n+1

13.18 13.19
0
(2n + 1)(2n + 1)! 0
n 2n + 1
2 3 5 6
13.20 x + x + x /3 − x /30 − x /90 · · ·
13.21 x2 + 2x4 /3 + 17x6 /45 · · ·
13.22 1 + 2x + 5x2 /2 + 8x3 /3 + 65x4 /24 · · ·
13.23 1 − x + x3 − x4 + x6 · · ·

,Chapter 1 3


13.24 1 + x2 /2! + 5x4 /4! + 61x6 /6! · · ·
13.25 1 − x + x2 /3 − x4 /45 · · ·
13.26 1 + x2 /4 + 7x4 /96 + 139x6 /5760 · · ·
13.27 1 + x + x2 /2 − x4 /8 − x5 /15 · · ·
13.28 x − x2 /2 + x3 /6 − x5 /12 · · ·
13.29 1 + x/2 − 3x2 /8 + 17x3 /48 · · ·
13.30 1 − x + x2 /2 − x3 /2 + 3x4 /8 − 3x5 /8 · · ·
13.31 1 − x2 /2 − x3 /2 − x4 /4 − x5 /24 · · ·
13.32 x + x2 /2 − x3 /6 − x4 /12 · · ·
13.33 1 + x3 /6 + x4 /6 + 19x5 /120 + 19x6 /120 · · ·
13.34 x − x2 + x3 − 13x4 /12 + 5x5 /4 · · ·
13.35 1 + x2 /3! + 7x4 /(3 · 5!) + 31x6 /(3 · 7!) · · ·
13.36 u2 /2 + u4 /12 + u6 /20 · · ·
13.37 −(x2 /2 + x4 /12 + x6 /45 · · · )
13.38 e(1 − x2 /2 + x4 /6 · · · )
4
13.39 1 − (x − π/2)2 /2! + (x − π/2) /4! · · ·
3
13.40 1 − (x − 1) + (x − 1)2 − (x − 1) · · ·
13.41 e [1 + (x − 3) + (x − 3) /2! + (x − 3)3 /3! · · · ]
3 2
2
13.42 −1 + (x − π) /2! − (x − π)4 /4! · · ·
13.43 −[(x − π/2) + (x − π/2)3 /3 + 2(x − π/2)5 /15 · · · ]
13.44 5 + (x − 25)/10 − (x − 25)2 /103 + (x − 25)3 /(5 · 104 ) · · ·

14.6 Error < (1/2)(0.1)2 ÷ (1 − 0.1) < 0.0056
14.7 Error < (3/8)(1/4)2 ÷ (1 − 14 ) = 1/32
14.8 For x < 0, error < (1/64)(1/2)4 < 0.001
For x > 0, error < 0.001 ÷ (1 − 12 ) = 0.002
1
14.9 Term n + 1 is an+1 = (n+1)(n+2) , so Rn = (n + 2)an+1 .
14.10 S4 = 0.3052, error < 0.0021 (cf. S = 1 − ln 2 = 0.307)

15.1 −x4 /24 − x5 /30 · · · ' −3.376 × 10−16
15.2 x8 /3 − 14x12 /45 · · · ' 1.433 × 10−16
15.3 x5 /15 − 2x7 /45 · · · ' 6.667 × 10−17
15.4 x3 /3 + 5x4 /6 · · · ' 1.430 × 10−11
15.5 0 15.6 12 15.7 10!
15.8 1/2 15.9 −1/6 15.10 −1
15.11 4 15.12 1/3 15.13 −1
15.14 t − t3 /3, error < 10−6 15.15 23 t3/2 − 52 t5/2 , error < 17 10−7
15.16 e2 − 1 15.17 √cos π2 = 0
15.18 ln 2 15.19 2
15.20 (a) 1/8 (b) 5e (c) 9/4
15.21 (a) 0.397117 (b) 0.937548 (c) 1.291286
15.22 (a) π 4 /90 (b) 1.202057 (c) 2.612375
15.23 (a) 1/2 (b) 1/6 (c) 1/3 (d) −1/2
15.24 (a) −π (b) 0 (c) −1
(d) 0 (e) 0 (f) 0
15.27 (a) 1 − vc = 1.3 × 10−5 , or v = 0.999987c
(b) 1 − vc = 5.2 × 10−7
(c) 1 − vc = 2.1 × 10−10
(d) 1 − vc = 1.3 × 10−11
15.28 mc2 + 21 mv 2
15.29 (a) F/W = θ + θ3 /3 · · ·
(b) F/W = x/l + x3 /(2l3 ) + 3x5 /(8l5 ) · · ·

, Chapter 1 4


15.30 (a) T = F (5/x + x/40 − x3 /16000 · · · )
(b) T = 21 (F/θ)(1 + θ2 /6 + 7θ4 /360 · · · )
15.31 (a) finite (b) infinite

16.1 (c) overhang: 2 3 10 100
books needed: 32 228 2.7 × 108 4 × 1086
P −3/2
16.4 C, ρ = 0 16.5 D, an 6→ P 0 −1 16.6 C, cf. n
16.7 D, I = ∞ 16.8 D, cf. n 16.9 −1 ≤ x < 1
16.10 |x| < 4 16.11 |x| ≤ 1 16.12 |x| < 5
16.13 −5 < x ≤ 1
16.14 1 − x2 /2 + x3 /2 − 5x4 /12 · · ·
16.15 −x2 /6 − x4 /180 − x6 /2835 · · ·
16.16 1 − x/2 + 3x2 /8 − 11x3 /48 + 19x4 /128 · · ·
16.17 1 + x2 /2 + x4 /4 + 7x6 /48 · · ·
16.18 x − x3 /3 + x5 /5 − x7 /7 · · ·
16.19 −(x − π) + (x − π)3 /3! − (x − π)5 /5! · · ·
16.20 2 + (x − 8)/12 − (x − 8)2 /(25 · 32 ) + 5(x − 8)3 /(28 · 34 ) · · ·
16.21 e[1 + (x − 1) + (x − 1)2 /2! + (x − 1)3 /3! · · · ]
16.22 arc tan 1 = π/4 16.23 1 − (sinπ)/π = 1
16.24 eln 3 − 1 = 2 16.25 −2
16.26 −1/3 16.27 2/3
16.28 1 16.29 6!
16.30 (b) For N = 130, 10.5821 < ζ(1.1) < 10.5868
16.31 (a) 10430 terms. For N = 200, 100.5755 < ζ(1.01) < 100.5803
16.31 (b) 2.66 × 1086 terms. For N = 15, 1.6905 < S < 1.6952
200 86
16.31 (c) ee = 103.1382×10 terms. For N = 40, 38.4048 < S < 38.4088

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
TestBanks2022 Harvard University
View profile
Follow You need to be logged in order to follow users or courses
Sold
2127
Member since
3 year
Number of followers
1700
Documents
2246
Last sold
4 weeks ago

4.0

343 reviews

5
183
4
59
3
45
2
18
1
38

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions