100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

integration by parts

Beoordeling
-
Verkocht
-
Pagina's
8
Cijfer
B
Geüpload op
12-04-2022
Geschreven in
2020/2021

Appreciate when integration by parts is required. Integrate functions using integration by parts, Evaluate definite integrals using integration by parts.

Instelling
Vak









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Vak

Documentinformatie

Geüpload op
12 april 2022
Aantal pagina's
8
Geschreven in
2020/2021
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

KG THWALA MATE1B1 2020
Assignment HW7 due 10/02/2020 at 11:59pm SAST



and we can find the second integral by using integration by parts
1. (1 point) again. Here, we let u = t and v0 = sin(t), so that u0 = 1 and
Antidifferentiate using a table of integrals. You may need to v = − cos(t), and
transform the integrand first. Z Z
5
Z
dz = 2t 2 cos(t) dt = 2t 2 sin(t) + 4t cos(t) − 4 cos(t) dt
4 + (z + 2)2
Solution:
SOLUTION = 2t 2 sin(t) + 4t cos(t) − 4 sin(t) +C.
Substituting w = z + 2, we get Answer(s) submitted:
Z
5 5 z+2 • 2((tˆ(2)-2)sin(t)+2t cos(t))+C
dz = arctan( ) +C.
4 + (z + 2)2 2 2 (correct)
Correct Answers:
Answer(s) submitted:
• 2*[tˆ2*sin(t)+2*t*cos(t)-2*sin(t)]+C
• [[5arctan((2z+4)/(4))]/2]+C
(correct) 4. (1 point)
Correct Answers:
Find the integral
• 2.5*atan((z+2)/2)+C (z + 1) e3z dz =
R

Solution:
2. (1 point) SOLUTION
Antidifferentiate using a table of integrals. You may need to We use integration by parts ( u v0 dx = u · v − u0 v dx) with
R R
transform the integrand first. u = z + 1 and v0 = e3z , so that u0 = 1 and v = 13 e3z . Then
dx
Z
√ =
z + 1 3z 1 3z z + 1 3z 1 3z
Z Z
36 − 25x2 (z + 1) e3z dz = e − e dz = e − e +C.
Solution: 3 3 3 9
SOLUTION
Answer(s) submitted:
We first factor out the 25 and then use the table to get
• [[[3z+2]eˆ(3z)]/9]+C
dx dx 1 dx
Z Z Z
√ = q = q = (correct)
36 − 25x2 25( 36 2 5 ( 56 )2 − x2
25 − x ) Correct Answers:
!   • [(1+z)/3-0.111111]*eˆ(3*z)+C
1 x 1 5
arcsin 6
+C = arcsin x +C.
5 5
5 6 5. (1 point)
Answer(s) submitted:
Find
R 6
the integral
x ln(x) dx =
• [[sinˆ(-1)((5x)/(6))]/5]+C
Solution:
(correct) SOLUTION
Correct Answers: We use integration by parts ( u v0 dx = u · v − u0 v dx) with
R R

• 0.2*asin(5*x/6)+C u = ln(x) and v0 = x6 . Then u0 = 1x and v = 71 x7 , so

1 1 6 1 1
Z Z
3. (1 point) x6 ln(x) dx = x7 ln(x) − x dx = x7 ln(x) − x7 +C.
Find the integral 7 7 7 49
R 2
2t cos(t) dt = Answer(s) submitted:
Solution:
• [[xˆ(7)(7ln(x)-1)]/49]+C
SOLUTION
We use integration by parts ( u v0 dx = u · v − u0 v dx) with (correct)
R R
2 0 0
u = t and v = cos(t), so that u = 2t and v = sin(t). Then Correct Answers:
Z Z • 0.142857*xˆ7*ln(x)-0.0204082*xˆ7+C
2t 2 cos(t) dt = 2t 2 sin(t) − 4t sin(t) dt,
1

, • w*asin(2*w)+0.5*sqrt(1-4*wˆ2)+C
6. (1 point)
Find the integral 9. (1 point)
R √
y y + 8 dy = Find
R 5
the integral
Solution: x sin(x3 ) dx =
SOLUTION Solution:
We use integration by parts ( u v0 dx = u · v − u0 v dx) with
R R
SOLUTION
u = y and v0 = (y + 8)1/2 . Then u0 = 1 and v = 23 (y + 8)3/2 . Thus We use integration by parts with v0 containing the sin(x3 )
term; to be able to integrate this, we must also include a factor
2 2
Z Z
1/2
y(y + 8) dy = ( ) · y · (y + 8)3/2 − (y + 8)3/2 dy = of x2 , and so let u = x3 and v0 = x2 sin(x3 ), so that u0 = 3x2 and
3 3 v = − 13 cos(x3 ). Thus
2 4
( ) · y · (y + 8)3/2 − · (y + 8)5/2 +C. 1
Z Z
3 15 x5 sin(x3 ) dx = − x3 cos(x3 ) + x2 cos(x3 ) dx =
Answer(s) submitted: 3
• [[(y+8)ˆ(3/2)(6y-32)]/15]+C 1 3 1
− x cos(x3 ) + sin(x3 ) +C.
(correct) 3 3
Correct Answers: Answer(s) submitted:
• 0.666667*y*(y+8)ˆ1.5-0.266667*(y+8)ˆ2.5+C • [[sin(xˆ(3))-xˆ(3)cos(xˆ(3))]/3]+C
(correct)
7. (1 point) Correct Answers:
Find
R 3 ln x
the integral • 0.333333*[-xˆ3*cos(xˆ3)+sin(xˆ3)]+C
x 5 dx =
Solution: 10. (1 point)
SOLUTION For each of the following integrals, indicate whether integra-
We use integration by parts ( u v0 dx = u · v − u0 v dx) with tion by substitution or integration by parts is more appropriate,
R R

u = ln(x) and v0 = x−5 . Thus u0 = 1x and v = − 4x14 , so that or if neither
R
method is appropriate. Do not evaluate the integrals.
  1. x sin x dx
3 ln x 1 1
Z Z
dx = 3 − 4 · ln(x) + dx = • A. neither
x5 4x 4x5
  • B. integration by parts
1 1 • C. substitution
3 − 4 · ln(x) − +C. R x2
4x 16x4 2. 1+x3 dx
Answer(s) submitted:
• A. substitution
• -[[12ln(x)+3]/(16xˆ(4))]+C • B. neither
(correct) • C. integration by parts
Correct Answers: R 2 x3
3. x e dx
• 3*(-[1/(4*xˆ4)]*ln(x)-1/(16*xˆ4))+C
• A. integration by parts
8. (1 point) • B. neither
Find
R
the integral • C. substitution
arcsin(2w) dw = 4. x2 cos(x3 ) dx
R
Solution:
• A. neither
SOLUTION
• B. substitution
We use integration by parts ( u v0 dx = u · v − u0 v dx) with
R R
• C. integration by parts
u = arcsin(2w) and v0 = 1. Then u0 = √ 2
2
and v = w, so that R 1
1−4w 5. √4x+1 dx
2w
Z Z
arcsin(2w) dw = w · arcsin(2w) − √ dw = • A. neither
1 − 4w2 • B. substitution
1p • C. integration by parts
w · arcsin(2w) + 1 − 4w2 +C.
2 (Note that because this is multiple choice, you will not be
The second integral is found using substitution with a substitu- able to see which parts of the problem you got correct.)
tion variable W = 1 − 4w2 . Solution:
Answer(s) submitted: SOLUTION
• [[2wsinˆ(-1)(2w)+sqrt(1-4wˆ(2))]/2]+C For each of these, we’re looking to see if there is a good sub-
(correct) stitution (we can take w to be the argument of a function, etc.,
Correct Answers: such that its derivative, dw = w0 dx, appears in the integrand; or,
2
$8.18
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
kwazithwala

Maak kennis met de verkoper

Seller avatar
kwazithwala University of Johannesburg
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
0
Lid sinds
3 jaar
Aantal volgers
0
Documenten
6
Laatst verkocht
-

0.0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen