BACKGROUND THEORY
Corresponding to each trigonometric (or hyperbolic) differentiation formula is an integration formula.
Although these are always given in a formula sheet, it will help you a great deal in the exam in terms of
saving time if you learn the formulas by heart.
Trigonometric Functions Hyperbolic Functions
d d
dusin u cos u du sinh u cosh u
dx dx
dx dx
cos u du sin u C
cosh u du sinh u C
d du d
dx
cos u sin u du cosh u sinh u
dx
dx dx
sin u du cos u C
sinh u du cosh u C
d d
du tan u sec u dutanh u sech u
2 2
dx dx
dx dx
sec u du tan u C
2
sech u du tanh u C
2
d d
dusec u sec u tan u dusech u sech u tanh u
dx dx
dx dx
sec u tan u du sec u C
sech u tanh u du sech u C
d d
ducsc u csc u cot u ducsch u csch u coth u
dx dx
dx dx
csc u cot u du csc u C
csch u coth u du csch u C
d du d du
dx
cot u csc2 u
dx
coth u csch2 u
dx dx
csc u du cot u C
2
csch u du coth u C
2
Special Standard Integrals:
Trigonometric Functions Hyperbolic Functions
tan udu ln sec u C tanh u du ln cosh u C
cot u du ln sin u C coth u du ln sinh u C
sec u du ln sec u tan u C sech u du arctan sinh u C
https://www.coursehero.com/file/43898061/INTEGRATION-Trigonometric-Functions-and-Hyperbolic-Functionspdf/
, csc u du ln csc u cot u C csch u du ln tanh u
2 C
This study source was downloaded by 100000829878664 from CourseHero.com on 03-06-2022 19:21:59 GMT -06:00
https://www.coursehero.com/file/43898061/INTEGRATION-Trigonometric-Functions-and-Hyperbolic-Functionspdf/