100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Samenvatting Oplossingen - factoranalyse

Rating
-
Sold
-
Pages
20
Uploaded on
02-03-2022
Written in
2021/2022

Oplossingen en de stappen die je moet doen om de oefeningen van de WPO's tot een goed einde te brengen

Institution
Course










Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
March 2, 2022
Number of pages
20
Written in
2021/2022
Type
Summary

Subjects

Content preview

Multivariate data-analyse



Oplossingen: Factoranalyse
De bedoeling bij factoranalyse is om de hoeveelheid variabelen te gaan reduceren. De nieuwe
variabelen die componenten genoemd worden die zijn dan een lineaire combinatie van de
oorspronkelijke variabelen, variabelen die correlaties hebben.

Het tweede is om latente structuren te ontdekken in de data. We gaan kijken welke variabelen bij
elkaar horen. Hoe kunnen we hier dan een analyse van maken.

Tijdens de WPO’s doen we enkel Principale Componenten Analyse. Op basis van de correlatiematrix
gaan we eigen waarden en eigen vectoren berekenen.

Als men een matrix vermenigvuldigt met zijn eigen vector, dan is dat een afbeelding op zichzelf. Je
krijgt dan identiek dezelfde matrix.

Een matrix heeft evenveel eigen waarde: stel dat je 5 veranderlijken opneemt in de factoranalyse
dan is de totale variantie (iedere verandelijke met zichzelf correlerende = een correlatiecoëffiënt van
1) dus de totaal variantie die dan binnengebracht wordt is 5. Want voor iedere veranderlijke 1tje en
dan weet je ook dat de som van de eigenwaardes 5 zal zijn. De eigenwaardes gaan we ordenen van
groot naar klein (De eerste grootste is de 1 ste component, de 2de grootste = 2de component enz). De
eerste component staat haaks op de tweede component, dus loodrecht (het wil dus zeggen dat er
geen verband is tussen de twee componenten). Het is mogelijk om het assenstelsel te laten draaien
en meer richting de componenten te duwen, in de richting van de veranderlijke. Hierdoor kan de
interpretatie doorgaans verhoogd zijn. We zullen zien hoe we een oblieke of scheve rotatie kunnen
uitvoeren.

Als men spreekt over geen correlatie tussen componenten. We zien dat dit weinig voorkomend is in
de psychologie.

Voorbeeldoefening p224

Voor de uitwerking in SPSS werden drie variabelen aan
het voorbeeld toegevoegd en werd de steekproef
uitgebreid tot 20 werknemers in plaats van 5. Aan de
werknemers werd nu ook gevraagd of ze hun werk
inhoudelijk interessant vonden, of zij voordelen in natura
(zoals een bedrijfswagen, een variabel loon onder de
vorm van cadeaucheques enz.) genoten en of de job
voldoende uitdaging inhield

Analyze  Dimension Reduction  Factor
Alle veranderlijken moeten opgenomen worden in de factoranalyse
daarom zet je ze allemaal bij variables

Klik bij Descriptives. Hier ga je het volgende aanvinken namelijk ‘univariate
descriptives, coefficients, significance levels, KMO and Bartlett’s test of
sphericity, reproduced en anti-image’

Klik bij Extraction. We duiden ‘unrotated factor solution en scree plot’ aan

Klik bij rotattion. We duiden ‘loading plots’ aan



1

, Multivariate data-analyse


We hebben 5 veranderlijken dus we gaan 5
componenten hebben

Aangezien dat onze componenten
lineaire combinaties zijn van onze
oorspronkelijke veranderlijken kunnen we die
wegschrijven naar ons databestand.
Dit doe je door op scores te klikken en ‘saves as
variables’ aan te vinken. Duidt ook ‘display factor
score coefficient matrix’ aan



Bij options klikken we ‘exclude
cases listwist’ en ‘sorted by size’ aan



We hebben 20
waarnemingen voor
alles en we hebben
ook de gemiddeldes
en
standaardafwijkingen




Als we nu gaan kijken naar de
correlatiematrix dan zien we dat
‘hoe beoordeelt u de vriendschap
onder collega’s’ met niks anders
correleert.

Maandelijks netto loon correleert
wel met voordelen in natura

Biedt de job voldoende uitdaging
correleert significant met vindt u
uw werk inhoudelijk interessant

We hebben 5 waarnemingen die
elke keer een variantie van 1
meebrengen en dit zie je mooi op
de diagonaal  dus de totale
variantie = 5




2

, Multivariate data-analyse


Het getal Kaiser-Meyer-Olkin measure of sampling
adequacy zou moeten groter zijn dan 0,5  we
hebben in dit geval 0,467 wat op een probleem wijst
met onze gegevens

De test van Bartlett’s test of Sphericity moet
significant zijn

Chi² (10) = 36,471

Nulhypothese: de correlatiematrix is gelijk aan de identiteitsmatrix dus dat is een matrix waarbij er
op de diagonaal allemaal 1tjes staan en alle andere elementen zijn 0 dus er is geen correlatie tussen
de gegevens  zonder correlatie heeft PCA weinig zin en moet je dus de nulhypothese kunnen
verwerpen wat hier het geval is aangezien dat de p-waarde <0,001 en dus significant is

Dus onze correlatiematrix is verschillend van de identiteitsmatrix, we hebben dus zinvolle correlatie
alhoewel die niet voldoende zijn

Hoe kunnen we hierop nu
remediëren dat is door op de
anti-image correlations te
gaan kijken

Op de diagonaal moet je gaan
kijken waar er een MSA
gebeurt van de individuele
veranderlijke en die zou ook
hoger moeten zijn 0,5

We zien dat dit het geval is
voor inhoudelijk interessant
en voor voldoende uitdaging

En dat de kleinste de
vriendschap onder collega’s is
en dat is niet verwonderlijk
want dat was de variabele die
met niks correleerde

Als we de KM veranderlijken willen verhogen is het aangeraden om de
variabele vriendschap onder collega’s eruit te halen

De communaliteiten dat zijn de proportie van de variantie die behouden
wordt van de verandelijken in de componenten (we hebben 5
veranderlijken dus we hebben 5 componenten behouden dus
communaliteiten = 100%, we hebben geen variantieverlies)

Communaliteiten voor en na rotatie blijven hetzelfde




3
$6.47
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached


Also available in package deal

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
Lauravdd Vrije Universiteit Brussel
Follow You need to be logged in order to follow users or courses
Sold
80
Member since
6 year
Number of followers
58
Documents
20
Last sold
2 months ago

4.3

7 reviews

5
4
4
2
3
0
2
1
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions