100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary A Level Geography Water and Carbon Notes

Rating
-
Sold
-
Pages
37
Uploaded on
13-02-2022
Written in
2021/2022

A complete guide on water and carbon with detailed notes for each spec point Includes notes from additional readings to help achieve higher grades

Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Study Level
Examinator
Subject
Unit

Document information

Summarized whole book?
Yes
Uploaded on
February 13, 2022
Number of pages
37
Written in
2021/2022
Type
Summary

Subjects

Content preview

TEMPORAL VARIATIONS IN RIVER DISCHARGE
River regimes → Annual variation in pattern of flow or discharge of a river, measured at a particular point. Water is
supplied from storm flow, overland flow, through flow and groundwater stores

Simple → Period of high and low channel flow, may correspond with seasonal temperature/rainfall change (monsoon or
snowmelt event)
Complex → Especially large river systems with large peaks and troughs throughout the year

FACTORS AFFECTING REGIMES
Physical Characteristics
Basin size
- Influences lag time.
- Large drainage basins → water takes a long time to travel through tributaries or the ground to reach the channel
- Small drainage basin → water has a shorter distance to travel, resulting in a shorter lag time

Basin shape
- Circular drainage basins → all points in the watershed are the same distance from the channel, leading to shorter lag
times & higher peak discharge
- Elongated drainage basins → longer lag times & lower peak discharge as water drains from furthest points of
watershed to the channel

Elevation/slope
- Steeply-sided river valley → faster lag times and higher peak discharge (due to gravity)
- Gently-sloping valleys → longer lag times and lower peak discharge

Rock type
- Permeable rocks → assist percolation
- Porous rocks (sandstone/chalk) → allow water to percolate through pore spaces
- Pervious rocks (limestone) → allow water to travel along joints and bedding planes
- Both types characterise by lack of surface drainage and high infiltration rates
- Impermeable rock (granite, shale, clay) → impedes drainage (restricts percolation) with high rates of overland flow and
surface run off

Soil type
- Controls infiltration rates, soil moisture storage and rate of through-flow
- Sandy soils → high infiltration rates (relatively large air spaces (voids) between particles)
- Clay/Silts → very little through-flow (small pore spaces)

Drainage density
- Total length of streams in a drainage basin divide by area of basin
- Impermeable rock and soils → higher drainage density due to lack of infiltration and percolation meaning water enters
the channel quickly, leading to increased discharge
- Permeable rock and soil → permeable rock and soil types have low drainage density

Rainfall type
- Amount and duration determine ground saturation
- Long period of rainfall → soil reaches field capacity (saturation capacity) impeding infiltration and causing high levels
of surface run off
- Snow can act as a store (intercepts water) and as a transfer when melting
- Vegetation cover → dense vegetation areas will experience high interception rates, root uptake and
evapotranspiration, reducing discharge levels within the basin
- Tropical rainforests intercept up to 80% of rainfall whilst arable land intercepts less than 10%

, Rainfall intensity
- Heavy rainfall may exceed infiltration capacity of soil → high surface runoff and a rapid increase in discharge

Antecedent conditions
- Weather condition in the period preceding a storm event
- Several weeks of prolonged, heavy rainfall → drainage basin reaches saturation capacity quickly; rise in level of water
table and increasing likelihood of saturation capacity being exceeded

Evapotranspiration rates
- Not constant throughout the year in mid-latitude location (UK)
- High temperatures (summer months) increase rates of evapotranspiration → reduced discharge
- Low temperatures (winter months) reduce evapotranspiration and root uptake/interception (reduced growth rates of
vegetation) → increasing discharge

Human Factors
Urbanisation
- Urbanisation → reduces infiltration to 0 due to use of impermeable surfaces (tarmac, concrete)
- Drains and gutters quickly transport water to the river channel
- Reduced lag time and increased discharge
- Rivers in urban areas characterised by “flashy” hydrography (high flood risk)

Deforestation
- Reduces interception, evapotranspiration and protective canopy layer
- Increased infiltration rates and saturation capacity being reached faster
- Rainfall travels by overland flow → high rates of soil erosion without binding nature of root system

Afforestation
- Planting of trees (often as soft engineering for flood management)
- Increasing infiltration and evapotranspiration rates → reduce river discharge
- Can take many years for trees to mature

Water extraction
- Extraction for industrial or domestic use reduces discharge amount

LINKS
- Unrealistic to examine all factors in isolation as they are all linked
- Weeks of heavy rain may have fallen in a drainage basin with sandy soils and gentle slopes following a dry summer
when water table fell significantly → ground may not reach saturation capacity for many weeks and an intense storm
won’t produce torrents of overland flow and flooding
- Drainage basins tend not to be characterised by only one type of soil and rock (or prescience/absence of urban area) so
will experience differences in infiltration rates

EXAMPLES OF RIVER REGIMES
What?
This river regime is quite complex and fluctuated greatly in 1942. Between April
and July, the river flow was between 1250 and 2500. This is much larger than the
flow of no more than 250 throughout the rest of the year. This same increase
occurred in October of 1942 with river flow jumping up to 2250 at the start of
October. In 1996, however, the river regime was much more steady with only one
increase mid-March, where river flow jumped up to 1500. This increase was
compared to a steady rate of no more than 500 throughout the rest of the year
Why?
During the summer months, snowmelt in the Rocky Mountains caused a
significant rise in water levels. Since 1942, the Hoover Dam has been built,
controlling the discharge throughout the year.
$16.49
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
freyamoody

Get to know the seller

Seller avatar
freyamoody Haileybury Imperial Service College
Follow You need to be logged in order to follow users or courses
Sold
1
Member since
3 year
Number of followers
1
Documents
3
Last sold
2 year ago

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions