100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.6 TrustPilot
logo-home
Lecture notes

Integrales

Rating
-
Sold
-
Pages
8
Uploaded on
12-02-2022
Written in
2021/2022

Apuntes acerca de las integrales

Institution
Module









Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Module

Document information

Uploaded on
February 12, 2022
Number of pages
8
Written in
2021/2022
Type
Lecture notes
Professor(s)
Elena
Contains
All classes

Subjects

Content preview

TEMIA :
CÁLCULO INTEGRAL DE UNA VARIABLE

FUNCION PRIMITIVA
Def : Sea f : ICIR -
IR una función real definida en un intervalo I .
Se dice que

La función Flx) es una función primitiva de la función flx) si

f- ( x ) f- ( x) tlx
'
=
,
c- I
Dado que dos funciones que se diferencian en una constante tienen la misma

derivada ,
si F es una primitiva de f en un intervalo I ,
entonces también lo


es G si es de la forma

G (x ) =
f- (x ) +
c
,




donde c es una constante arbitraria .




Def Sea f : : ICIR -
IR una función real definida en un intervalo I , se llama


función integral indefinida de f al conjunto de todas sus funciones primitivas
tal que

{ f- ( ) dx x = Flx) + c.



con c una constante arbitraria y
F una primitiva cualquiera de f.

TABLA DE INTEGRALES INMEDIATAS
/ Kdx kxtc { ¥ dx =
= lnxtc


{ Pdx ☒ {
"
P
✗ ✗
dx = + C =/ 1 COSX =
ser ✗ + C
p
-




{ e

dx = e.

+ c
fsenxdx = -
COSX + C




| +
DX

+ ×
,
= arctg ✗ + C
f
dx

1- ✗ a
= arcsenx + [




EJEMPLOS
• (( 5×2 + ✗ + 3) dx =


5¥ ¥ + +3×-1 C




'

/ COSCXIDX = Sen ( x ) + C




.
/ ( f- ✗
2
+
{ ✗ -



3) dx = 7- 1¥ +
12¥ - 3✗ =
¥ ¥ + -3×-1 a





} dx =

×
. COSX dx = In lsenxl +a




°
{ 2x Cas (✗
2
+ 5) dx = sen ( ✗ 2+5) +C




°

|,?# DX =

[ 2¥ ,
,
DX = arctg ( ✗ 2) + a





/ ¥2 dx =
arctg ✗ + c





/Y dx =
{ ✗ dx

, INTEGRACION POR '
ARTES
Sean U y o dos funciones derivable en un intervalo ] ,
se verifica que :




fulxldo = UCXIVCX) -



focx du )

Se utiliza en aquellos casos en los cuales podamos descomponer la función en dos

partes , y es consecuencia de la fórmula de la derivada de un producto .




Regla Alpes : Arcas Logarítmicas Polinómicas Exponenciales Senos y caseros


EJEMPLOS :




{
/✗ e
}
"
1)
le ex (

✗ ex ,) + a
"
dx = u = ✗ → du = 1 ✗ l ' -

DX =
-
e = × _


=


dv = e
✗ →
v = fexdx = ex

/
'





{ }
'
2) ✗ e. dx = a = ✗
3



=/e "
¿%
"
dv = e. dx → o no es inmediata




{ }
2
U = ✗ → du = 2 ✗ DX
"

=/ édx
"

21/2
"

fe
dv = ✗e dx → o ✗e dx = ✗ =
,




12 )
"

/ fe
" " " "

#
2.

fe 2 ✗ dx
¥ je
+ e a
e c
-
= = = +
.
- -




CAMBIO DE VARIABLES
Sea ¢ CN una función derivable en un intervalo [ , con derivada 104×1 continua

y sea
f una función continua ,
entonces haciendo el cambio de variable 1- =
Iocxl

se obtiene que

ff ( d ( xD .
#
'
( xtdx =
/ fctdt
Una vez calculada la integral respecto de la nueva variable , debemos deshacer

el cambio sustituyendo t por la inversa de la función ¢41 .




EJEMPLOS :


1) /☒ dx = / FÉ) dx = V9 IFÉI .

dx =3
/ FEF dx =

y Y
Sent cost + ser
'
✗ =: 1- sería cambio variable
Iz
1 casa de
pq
→ : →
= =


Es = Sent →

fgdx = castdt

DX =3
costdt
=3 /
Ttqrit .
3 castdt = 9 {cóítdt = a
/ 1+% dt g-(fldt -1%2 coscztdt) = =

T
'
Cos t
' + ser t = 1

cosa t -
= Cos (2t )

Zcaszt = 1 + casczt )
casa t
1+q 1- COSCZT )
=
→ serít =

2




G- (1- { sencsntl) G-Larsen(5) Isen( /¥))
=
+ + a + raras en + a




2)
{( e
"

-1×1+-3) dx =
fe "
dx +
/¥ ,
dx
T
=
/ 1 etdt,
+
¥ ,
dx =
jet + Inl ✗ +31 + C



3/1 = t

3d ✗ = dt



dztdesna-EI.ge
dx =
"

cambio
+ lnlxt 31 + C
$8.83
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
anadueas

Get to know the seller

Seller avatar
anadueas Universidad de Cádiz
Follow You need to be logged in order to follow users or courses
Sold
0
Member since
3 year
Number of followers
0
Documents
4
Last sold
-

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these revision notes.

Didn't get what you expected? Choose another document

No problem! You can straightaway pick a different document that better suits what you're after.

Pay as you like, start learning straight away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and smashed it. It really can be that simple.”

Alisha Student

Frequently asked questions