100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Zusammenfassung Klausurvorbereitung Statistik 2 (Psychologie PFH Göttingen), Note: 1,0

Beoordeling
4.9
(13)
Verkocht
61
Pagina's
30
Geüpload op
24-01-2022
Geschreven in
2021/2022

Die vorliegende Zusammenfassung kombiniert so kompakt wie möglich die wichtigsten , klausurrelevanten Inhalte aus den Fernlehrbriefen 1 und 2 (Statistik 2). Zudem habe ich eine Übersicht der Testverfahren inkl. Anwendung, Voraussetzungen, Hyphotesten (wörtlich und formal) und Beispielen erstellt. Ich konnte mit dieser Vorbereitung eine 1,0 erzielen. Da Statistik sehr komplex ist, lohnt es sich immer zusätzlich selbst Reflexionsaufgaben zu bearbeiten, die FLB durchzugehen und Vorlesungen anzuschauen. :-)

Meer zien Lees minder
Instelling
Vak










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
24 januari 2022
Aantal pagina's
30
Geschreven in
2021/2022
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Statistik 2
Zusammenfassung: Testverfahren I (Einführung in die inferenzstatistische Hypothesentestung)

«Inferenzstatistische Hypothesentestung dient der Testung verschiedener Fragestellungen über
Populationsverhältnisse, mit dem Ziel eine Entscheidung über das Beibehalten oder Zurückweisen
einer Nullhypothese mittels des Stichprobenbefunds zu treffen.»



Kapitel 1: Einführung in die inferenzstatistische Hypothesentestung

Das erste Kapitel führt in die inferenzstatistische Hypothesentestung ein und stellt wichtige Kernkonzepte wie die
Null- und Alternativhypothese dar, sowie die Bedeutung der Alpha- und Beta-Fehler und Überlegungen zur
Teststärke und zum optimalen Stichprobenumfang.



Aufgabe der inferenzstatistischen Hypothesentestung

- Die inferenzstatistische Hypothesentestung hat die Aufgabe, anhand von Stichprobenkennwerten Hypothesen
über die Population zu testen. Somit soll die Übertragbarkeit von einem Stichprobenereignis auf die
Population validiert werden.



Hypothesen

- Zu Beginn einer Studie wird eine von Theorien geleitete, wissenschaftliche Fragestellung in Form einer
Hypothese aufgestellt. Dazu muss die Fragestellung in Fachbegriffen präzisiert werden (Operationalisierung).

- Grundsätzlich werden gegensätzliche, einander ausschließende Hypothesen formuliert, nämlich die
Nullhypothese und die Alternativhypothese.

(1) Nullhypothese:

Auch genannt «Negativhypothese». Sie behauptet, dass es keine (Mittelwerts-)Unterschiede bzw. keine
Zusammenhänge in der Population gibt. Die Annahme lautet hier, dass eventuell in Stichproben auftretende
Mittelwertsunterschiede oder Zusammenhänge zufällig bei der Stichprobenziehung entstanden sind. Sie wird
als H0 bezeichnet und steht komplementär zu Alternativhypothese.

(2) Alternativhypothese:

Auch genannt «Positivhypothese». Sie behauptet, dass ein Unterschied oder ein Zusammenhang in der
Population besteht. Die Alternativhypothese sollte immer aus Theorien, Vorstudien und Literatur abgeleitet
sein. Sie wird mit H1 bezeichnet.



Grundsätzliche Annahmen:

- Nullhypothese ist die Grundlage der inferenzstatistischen Hypothesentestung. Nur in Abhängigkeit der
Nullhypothese können Wahrscheinlichkeiten ermittelt werden.

- Je größer die (Mittelwerts-)Differenz des untersuchten Merkmals zufällig aus der Population gezogener
Stichproben ist, desto kleiner ist die Wahrscheinlichkeit, dass die Nullhypothese aufrechterhalten werden
kann.
1

, - Wenn die Nullhypothese nicht mehr gültig ist muss die Alternativhypothese angenommen werden. Es gibt nur
diese beiden Möglichkeiten! Nur wenn die H0 verworfen wird können Aussagen über die H1 geformt werden!



Ungerichtete und gerichtete Alternativhypothesen:

- Ungerichtete H1: Es wird davon ausgegangen, dass es lediglich einen Unterschied zwischen zwei
Stichprobenkennwerten gibt, wobei nicht festgelegt wird, welche Richtung dieser hat, also in welcher
Stichprobe der größere Mittelwert erwartet wird. Nur die Existenz eines Unterschieds wird untersucht. Man
nennt dieses Vorgehen auch explorativ. Dies sollte nie einen Mangel an Vorwissen kaschieren.

- Gerichtete H1: Es wird, durch Voruntersuchungen und theoretische Vorüberlegungen, die Richtung eines
Unterschiedes zwischen zwei Stichprobenkennwerten angegeben. Es wird also vor der Datenerhebung
bestimmt, in welcher Stichprobe der höhere Mittelwert erwartet wird. Diesem Verfahren wird aufgrund des
theoriegeleiteten Vorgehens ein höherer Stellenwert eingeräumt, es wird als wissenschaftlicher betrachtet
(abgesehen von Fachzeitschriften und Biometrikern).



Formulierung von Hypothesen:

- Es sei μ1 die mittlere (…) in der Population der (…) und es sei μ2 die mittlere (…) in der Population der (…).

Dann gilt:

H₀: μ₁ = μ₂ Nullhypothese

H₁: μ₁ ≠ μ₂ ungerichtete Alternativhypothese

H₁: μ₁ < μ₂ gerichtete Alternativhypothese

H₁: μ₁ > μ₂ entgegengesetzt gerichtete Alternativhypothese

bei einem α-Niveau von 5%.

- Es gilt hier anzumerken, dass immer nur eine Form der Alternativhypothese formuliert wird, aber hier
beispielhaft alle Varianten aufgeführt sind.



Konkretes Beispiel: Es sei μ₁ die mittlere Reaktionszeit auf akustische Reize der Population der Frauen und es
sei μ₂ die mittlere Reaktionszeit auf akustische Reize der Population der Männer.

Es gilt:

H₀: μ₁ = μ₂

H₁: μ₁ ≠ μ₂

bei einem α–Niveau von 5%

Es handelt sich um eine ungerichtete Alternativhypothese, da nicht definiert, welches Geschlecht die bessere
Leistung erbringt. Würden Frauen niedrigere (bessere) Reaktionszeit aufweisen, so würde es sich um eine
gerichtete Alternativhypothese handeln, mit: H₀: μ₁ = μ₂ und H₁: μ₁ < μ₂.




2

, Das ɑ-Niveau (alpha-Niveau)

- Das a-Niveau legt in Bezug zur Stichprobengröße und zu Grunde liegender theoretischer Verteilung eine
Fläche unter der Verteilungskurve und damit einen Grenzwert für ein Konfidenzintervall fest. Wenn der
empirisch ermittelte Kennwert außerhalb des Intervalls liegt, wird die H0 verworfen und die H1 angenommen.

- Es besteht immer ein Restrisiko eine Fehlentscheidung gegen eine gültige Nullhypothese (a-Fehler) zu treffen.
Es bleibt also eine Irrtumswahrscheinlichkeit. Diese wird meist auf 5% festgelegt. Bei Fragestellungen mit
gravierenden Konsequenzen kann auch ein Niveau von 1% oder 0,1% festgelegt werden.

- Per Signifikanztest kann ermittelt werden, ob es sich bei einem zuvor festgelegten a-Niveau um ein
signifikantes oder ein nicht signifikantes Ergebnis handelt (dichotomer Ausgang).



Signifikanz

- Wenn die Wahrscheinlichkeit für das Auftreten eines gefundenen oder eines größeren
Mittelwertsunterschieds unter der Bedingung einer Nullhypothese unterhalb des a-Niveaus liegt, handelt es
sich um einen statistisch bedeutsamen, also signifikanten Unterschied.

- Es gilt also: Wird die Wahrscheinlichkeit für die Gültigkeit der Nullhypothese bei einer vorliegenden
Stichprobenmittelwertsdifferenz gering, so wird die Alternativhypothese signifikant (statistisch bedeutsam).



Ein- und zweiseitige Testung

- Einseitige Testung: Gerichtete Hypothese liegt zu Grunde. Die
Richtung des Mittelwertsunterschieds ist aus einer Theorie /
Voruntersuchung ableitbar. Der Ablehnungsbereich ist auf einer
Seite der Verteilung festgelegt. Vorteilhaft ist, dass die Testung in
die «richtige» Richtung erfolgt und der Mittelwertsunterschied
schon bei geringer Differenz signifikant ist und ist wissenschaftlich
angesehener.

Bsp.: Der mittlerer Schuhgrößenunterschied von Frauen und
Männern wird untersucht und aufgrund von Theorien /
Voruntersuchung die Richtung der These festgelegt, dass Männer
die größeren Schuhgrößen haben.

- Zweiseitige Testung: Ungerichtete Hypothese liegt zu Grunde. Eine
Aussage über die Richtung des Mittelwertsunterschieds ist nicht
möglich. Der Mittelwertsunterschied muss groß genug sein um
signifikant zu werden. Ablehnungsbereich wird auf 2x 2,5 % verteilt.
Vorteilhaft ist hierbei, dass die Mittelwertsdifferenz unabhängig
vom Vorzeichen signifikant ist.




3
$18.09
Krijg toegang tot het volledige document:
Gekocht door 61 studenten

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Beoordelingen van geverifieerde kopers

7 van 13 beoordelingen worden weergegeven
2 weken geleden

3 maanden geleden

5 maanden geleden

10 maanden geleden

1 jaar geleden

1 jaar geleden

Extremely helpful for the Statistics 2 exam, I can only recommend it for intensive preparation.

1 jaar geleden

4.8

13 beoordelingen

5
12
4
0
3
1
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
MelPsychPFH PFH Private Hochschule Göttingen (Göttingen)
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
232
Lid sinds
4 jaar
Aantal volgers
138
Documenten
0
Laatst verkocht
1 week geleden

4.7

36 beoordelingen

5
31
4
1
3
3
2
0
1
1

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen