100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Samenvatting Food Physics FPH 20306

Rating
3.7
(3)
Sold
14
Pages
23
Uploaded on
17-05-2015
Written in
2014/2015

Summary Food Physics

Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
May 17, 2015
Number of pages
23
Written in
2014/2015
Type
Summary

Subjects

Content preview

Summary Food Physics FPH 20306
Chapter 2 Rheology
rheology: studies relation between forces (stress) applied on a material and its
(rate) of deformation
Applied force F or stress σ deformation γ, important in processing, sensory
perception, chewing
Viscous liquids and elastic solids, viscous: needs time, deforms slowly, elastic:
deforms instantaneous

Viscous liquids
shear rate γxy = δVx(y)/δy [s-1] Vx changing in y-direction
extensional γxx = δVx(x)/δy [s-1] uniaxial -> ---> ------>
x direction stress, y direction of velocity gradient
Shear = extensional + rotational

Relation between shear/extensional rate and stress [Pa]:
σxy = η · γxy η: shear viscosity [Pa s]
σxx = ηE · γxx ηE: extensional viscosity [Pa s]

Fluids are Newtonian if the viscosity stays constant, independent of shear rate
and time.
Newtonian fluid: ηE = η, no rotational shear, examples: water, glycerol
For most dispersions and macromolecular solutions: ηE ≠ η, the rotational
viscosity is nonzero, the large structures resist to rotation

Newtonian behaviour
linear model, η constant with deformation, stress linear to deformation
Some only show linear behaviour at very low shear rates (η 0: zero shear viscosity)

Types of Non-Newtonian behaviour
Shear thinning: shear will disentangle the chains, on its path through the chain
will form new entanglements, rate of disentanglement > rate of formation new
entanglements
Δtγ < Δte : only a few entanglements formed, number of entanglements decreases
for increasing shear rate, and as a result η decreases for increasing shear rate.
Mechanism for dispersions & emulsions : large clusters high friction, layered
structure less friction,

Shear thickening: At high shear rates, the layer structure becomes unstable
and the particles will start to form clusters again, increase in viscosity

Bingham and plastic flow: have a yield stress, below this stress this material
behaves solid like (deformation but no viscous flow), above it it starts to flow,
For Bingham viscosity is a constant, in plastic flow shear thinning

, Elastic solids
Solids do not flow and will deform, not γ shear rate in s-1, but γ displacement,
strain [no unit]
Ideal elastic solid, σxy = G · γxy γxy = δux(y)/δy ux = x - x 0
G: elastic or storage modulus [Pa], γxy: deformation [-]
Ideally the solid material stores all the energy applied to the system by a
deformation reversibly,
called a Hookean solid, then the modulus G is independent of deformation and
time
For small deformations: γxy = δux/δy = tanϑ

σxy = E · γxx γxx = δux(x)/δx = ΔL/L E: extensional modulus
Uni axial extension, does not conserve volume For most materials: E ≠ G
Bi axial extension: volume is conversed, E = 3G γ xx = δux(x)/δx and γxy = δux-
(y)/δx

Non-Hookean behaviour
strain thinning: entangled (not cross linked) macromolecules)
strain hardening: in chemically covalently crosslinked rubber like materials,
when there is a limit of stretching the network, disruption of strong bonds costing
energy (after disruption shear thinning)

Viscoelastic materials
Slow deformation: viscous reaction, quick: elastic (linear), contributions
separated by oscillatory shear experiments, for Hookean solid, the deformation
and stress are in phase, for a Newtonian fluid the deformation is out of phase
with the stress, and there is a phase shift δ ω: frequency
0≤δ≤0.5π, when δ is close to zero: elastic, close to 0.5π: viscous

G'= (σ0/γ0) cos(δ) G''= (σ0/γ0) sin(δ)
G': storage/elastic modulus, measure for the amount of energy that is
reversibly stored
G'': loss modulus, measure for the energy lost as result of viscous friction
G''/G' = sin δ / cos δ = tan δ loss tangent, measure for how viscous or elastic
the material is
tan δ < 1 : elastic, tan δ > 1 viscous
Linear viscoelastic materials: G' and G'' are constant, but generally they depend
on strain and time/ω

Time dependent behaviour
Apply a constant shear γ, then maximum (stress build-up) till steady state
value
Longer relaxation time (time when 1/e of stress) longer time to adapt structure
at a certain pressure, difficulty to reform network (high amount of covalent
crossbonds), sample history is important
Hysteresis occurs with non-Newtonian systems that slowly convert back to their
original form
it takes more time for the structures to reform than it did for them to break down
$4.81
Get access to the full document:
Purchased by 14 students

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Reviews from verified buyers

Showing all 3 reviews
6 year ago

8 year ago

9 year ago

Good summary, not everything is explained clearly but you may well just look in the reader

3.7

3 reviews

5
0
4
2
3
1
2
0
1
0
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
fissatessa Wageningen University
Follow You need to be logged in order to follow users or courses
Sold
171
Member since
10 year
Number of followers
104
Documents
0
Last sold
1 year ago

3.7

34 reviews

5
7
4
15
3
8
2
3
1
1

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions