100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Samenvatting Uitwerkingen SPSS sessie 1/4 psychometrie

Rating
-
Sold
5
Pages
14
Uploaded on
09-01-2022
Written in
2020/2021

Dit document bevat uitgebreide uitwerkingen (inclusief spss stappen) van SPSS sessie 1/4 van het vak psychometrie. Daarnaast bevat het een korte samenvatting van de worked examples. Ik heb met deze samenvatting een 8 gehaald voor het tentamen.

Show more Read less
Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
January 9, 2022
Number of pages
14
Written in
2020/2021
Type
Summary

Subjects

Content preview

SPSS SESSIE 1

a. Bereken de schaalscore als de som van alle ADHD-items. Bereken de schaalscore alleen voor
respondenten die minimaal 22 geldige antwoorden hebben. Rond de schaalscores af op gehele
getallen (0 decimalen). Wat is de gemiddelde schaalscore?
1. Transform > Compute > Target Variable: scalescore > Numeric Expression:
rnd(MEAN.22(bva01 to bva26)*26) > ok
2. Analyze > Descriptive Statistics > Descriptives > Variable: scalescore > Statistics: mean > ok
> De gemiddelde schaalscore is: 27.24
MEAN.N-functie: vooral geschikt is voor tests die gedrag of attitudes meten.
N: het aantal waarnemingen dat minimaal nodig is om de schaalscore te berekenen >
MEAN.8 betekent dat een respondent minimaal 8 antwoorden moet hebben om een
schaalscore te berekenen. De waarde van N is een subjectieve keuze.
Voorbeeld: een vragenlijst die autisme meet en uit 30 vragen bestaat en een Likert-schaal
van 5 punten gebruikt. Hoeveel items moeten er minimaal worden beantwoord om een
schaalscore te krijgen die representatief is voor de mate van autisme van een bepaald kind.
Stel dat we N=20 gebruiken. Bij kinderen met een aantal waarnemingen kleiner dan 20,
wordt geen schaalscore berekend. Voor kinderen met minimaal 20 antwoorden wordt de
gemiddelde score berekend op basis van het aantal geldige antwoorden. Een nadeel van een
gemiddelde als schaalscore is dat deze vaak decimalen heeft en dat is voor praktische
doeleinden niet bruikbaar. Daarom kunnen de gemiddelde scores worden vermenigvuldigd
met het totale aantal items, in dit geval 30. De spss-functie wordt dan: MEAN.20 * 30. We
kunnen de functie RND gebruiken om de getallen af te ronden. De complete functie in SPSS
wordt dan: RND (MEAN.20 * 30).
b. Maak een staafdiagram voor de gemiddelde schaalscore voor jongens en meisjes.
Graphs > Legacy Dialogs > Bar > Simple > Summaries for groups of cases > other statistic >
variable: scalescore > Category axis: gender > ok




c. Bereken de Z-scores van de schaalscores. Wat is de t-waarde van het verschil in gemiddelden
tussen jongens en meisjes?
1. Analyze > Descriptive Statistics > Descriptives > Variable: scalescore > save standardized
values as variables > ok
2. Analyze > Compare Means > Independent-Samples T test > Test variable: Z-score
(scalescore) > Grouping Variable: gender (0,1) > ok
De output laat zien dat de T-statistieken 2.654 zijn. Aangezien de Levene-test laat zien dat die
varianties niet gelijk zijn (test is significant), moeten we kijken naar de tweede regel: gelijke

, varianties NIET aangenomen. De bijbehorende p-waarde laat zien dat we de hypothese dat
man en vrouw dezelfde schaalscore hebben, moeten verwerpen. Vanuit vraag b weten we
dat jongens gemiddeld hoger scoren dan meisjes.




d. Bereken de kans dat een kind een score van 20 of lager heeft. Ga er vanuit dat de schaalscore
een normale verdeling heeft.
1. Transform > Compute variable > Target variable: p-value > Numeric Expression:
CDF.NORMAL(Zscalescore,0,1) > ok
We moeten berekenen dat een kind een score van 20 of lager heeft uitgaande van een
normale verdeling. We kunnen de functie CDF.normal gebruiken.




Als je de gestandaardiseerde scores (Zscalescore) gebruikt, is het gemiddelde 0 en de
standaarddeviatie 1.
Vervolgens kun je de kans vinden dat iemand een score van 20 of lager heeft in de dataset.
Deze kans is: .35.
e. Controleer of de schaalscore inderdaad een normale verdeling heeft.
1. Analyze > Descriptive Statistics > Explore > Dependent List: scalescore > Plot: factor levels
together + histogram + normality plots with tests > ok




We moeten nagaan of de schaalscore inderdaad een normale verdeling heeft.
De skewness en Kurtosis-waarden moeten worden gedeeld door hun standaardfout. Om te
concluderen dat de verdeling ongeveer normaal is, moeten ze ergens tussen -1,96 en 1,96
$6.67
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached


Document also available in package deal

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
shannonspork Haagse Hogeschool
Follow You need to be logged in order to follow users or courses
Sold
168
Member since
9 year
Number of followers
99
Documents
14
Last sold
2 weeks ago

3.6

8 reviews

5
1
4
5
3
1
2
0
1
1

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can immediately select a different document that better matches what you need.

Pay how you prefer, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card or EFT and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions