SPSS SESSIE 1
a. Bereken de schaalscore als de som van alle ADHD-items. Bereken de schaalscore alleen voor
respondenten die minimaal 22 geldige antwoorden hebben. Rond de schaalscores af op gehele
getallen (0 decimalen). Wat is de gemiddelde schaalscore?
1. Transform > Compute > Target Variable: scalescore > Numeric Expression:
rnd(MEAN.22(bva01 to bva26)*26) > ok
2. Analyze > Descriptive Statistics > Descriptives > Variable: scalescore > Statistics: mean > ok
> De gemiddelde schaalscore is: 27.24
MEAN.N-functie: vooral geschikt is voor tests die gedrag of attitudes meten.
N: het aantal waarnemingen dat minimaal nodig is om de schaalscore te berekenen >
MEAN.8 betekent dat een respondent minimaal 8 antwoorden moet hebben om een
schaalscore te berekenen. De waarde van N is een subjectieve keuze.
Voorbeeld: een vragenlijst die autisme meet en uit 30 vragen bestaat en een Likert-schaal
van 5 punten gebruikt. Hoeveel items moeten er minimaal worden beantwoord om een
schaalscore te krijgen die representatief is voor de mate van autisme van een bepaald kind.
Stel dat we N=20 gebruiken. Bij kinderen met een aantal waarnemingen kleiner dan 20,
wordt geen schaalscore berekend. Voor kinderen met minimaal 20 antwoorden wordt de
gemiddelde score berekend op basis van het aantal geldige antwoorden. Een nadeel van een
gemiddelde als schaalscore is dat deze vaak decimalen heeft en dat is voor praktische
doeleinden niet bruikbaar. Daarom kunnen de gemiddelde scores worden vermenigvuldigd
met het totale aantal items, in dit geval 30. De spss-functie wordt dan: MEAN.20 * 30. We
kunnen de functie RND gebruiken om de getallen af te ronden. De complete functie in SPSS
wordt dan: RND (MEAN.20 * 30).
b. Maak een staafdiagram voor de gemiddelde schaalscore voor jongens en meisjes.
Graphs > Legacy Dialogs > Bar > Simple > Summaries for groups of cases > other statistic >
variable: scalescore > Category axis: gender > ok
c. Bereken de Z-scores van de schaalscores. Wat is de t-waarde van het verschil in gemiddelden
tussen jongens en meisjes?
1. Analyze > Descriptive Statistics > Descriptives > Variable: scalescore > save standardized
values as variables > ok
2. Analyze > Compare Means > Independent-Samples T test > Test variable: Z-score
(scalescore) > Grouping Variable: gender (0,1) > ok
De output laat zien dat de T-statistieken 2.654 zijn. Aangezien de Levene-test laat zien dat die
varianties niet gelijk zijn (test is significant), moeten we kijken naar de tweede regel: gelijke
, varianties NIET aangenomen. De bijbehorende p-waarde laat zien dat we de hypothese dat
man en vrouw dezelfde schaalscore hebben, moeten verwerpen. Vanuit vraag b weten we
dat jongens gemiddeld hoger scoren dan meisjes.
d. Bereken de kans dat een kind een score van 20 of lager heeft. Ga er vanuit dat de schaalscore
een normale verdeling heeft.
1. Transform > Compute variable > Target variable: p-value > Numeric Expression:
CDF.NORMAL(Zscalescore,0,1) > ok
We moeten berekenen dat een kind een score van 20 of lager heeft uitgaande van een
normale verdeling. We kunnen de functie CDF.normal gebruiken.
Als je de gestandaardiseerde scores (Zscalescore) gebruikt, is het gemiddelde 0 en de
standaarddeviatie 1.
Vervolgens kun je de kans vinden dat iemand een score van 20 of lager heeft in de dataset.
Deze kans is: .35.
e. Controleer of de schaalscore inderdaad een normale verdeling heeft.
1. Analyze > Descriptive Statistics > Explore > Dependent List: scalescore > Plot: factor levels
together + histogram + normality plots with tests > ok
We moeten nagaan of de schaalscore inderdaad een normale verdeling heeft.
De skewness en Kurtosis-waarden moeten worden gedeeld door hun standaardfout. Om te
concluderen dat de verdeling ongeveer normaal is, moeten ze ergens tussen -1,96 en 1,96
a. Bereken de schaalscore als de som van alle ADHD-items. Bereken de schaalscore alleen voor
respondenten die minimaal 22 geldige antwoorden hebben. Rond de schaalscores af op gehele
getallen (0 decimalen). Wat is de gemiddelde schaalscore?
1. Transform > Compute > Target Variable: scalescore > Numeric Expression:
rnd(MEAN.22(bva01 to bva26)*26) > ok
2. Analyze > Descriptive Statistics > Descriptives > Variable: scalescore > Statistics: mean > ok
> De gemiddelde schaalscore is: 27.24
MEAN.N-functie: vooral geschikt is voor tests die gedrag of attitudes meten.
N: het aantal waarnemingen dat minimaal nodig is om de schaalscore te berekenen >
MEAN.8 betekent dat een respondent minimaal 8 antwoorden moet hebben om een
schaalscore te berekenen. De waarde van N is een subjectieve keuze.
Voorbeeld: een vragenlijst die autisme meet en uit 30 vragen bestaat en een Likert-schaal
van 5 punten gebruikt. Hoeveel items moeten er minimaal worden beantwoord om een
schaalscore te krijgen die representatief is voor de mate van autisme van een bepaald kind.
Stel dat we N=20 gebruiken. Bij kinderen met een aantal waarnemingen kleiner dan 20,
wordt geen schaalscore berekend. Voor kinderen met minimaal 20 antwoorden wordt de
gemiddelde score berekend op basis van het aantal geldige antwoorden. Een nadeel van een
gemiddelde als schaalscore is dat deze vaak decimalen heeft en dat is voor praktische
doeleinden niet bruikbaar. Daarom kunnen de gemiddelde scores worden vermenigvuldigd
met het totale aantal items, in dit geval 30. De spss-functie wordt dan: MEAN.20 * 30. We
kunnen de functie RND gebruiken om de getallen af te ronden. De complete functie in SPSS
wordt dan: RND (MEAN.20 * 30).
b. Maak een staafdiagram voor de gemiddelde schaalscore voor jongens en meisjes.
Graphs > Legacy Dialogs > Bar > Simple > Summaries for groups of cases > other statistic >
variable: scalescore > Category axis: gender > ok
c. Bereken de Z-scores van de schaalscores. Wat is de t-waarde van het verschil in gemiddelden
tussen jongens en meisjes?
1. Analyze > Descriptive Statistics > Descriptives > Variable: scalescore > save standardized
values as variables > ok
2. Analyze > Compare Means > Independent-Samples T test > Test variable: Z-score
(scalescore) > Grouping Variable: gender (0,1) > ok
De output laat zien dat de T-statistieken 2.654 zijn. Aangezien de Levene-test laat zien dat die
varianties niet gelijk zijn (test is significant), moeten we kijken naar de tweede regel: gelijke
, varianties NIET aangenomen. De bijbehorende p-waarde laat zien dat we de hypothese dat
man en vrouw dezelfde schaalscore hebben, moeten verwerpen. Vanuit vraag b weten we
dat jongens gemiddeld hoger scoren dan meisjes.
d. Bereken de kans dat een kind een score van 20 of lager heeft. Ga er vanuit dat de schaalscore
een normale verdeling heeft.
1. Transform > Compute variable > Target variable: p-value > Numeric Expression:
CDF.NORMAL(Zscalescore,0,1) > ok
We moeten berekenen dat een kind een score van 20 of lager heeft uitgaande van een
normale verdeling. We kunnen de functie CDF.normal gebruiken.
Als je de gestandaardiseerde scores (Zscalescore) gebruikt, is het gemiddelde 0 en de
standaarddeviatie 1.
Vervolgens kun je de kans vinden dat iemand een score van 20 of lager heeft in de dataset.
Deze kans is: .35.
e. Controleer of de schaalscore inderdaad een normale verdeling heeft.
1. Analyze > Descriptive Statistics > Explore > Dependent List: scalescore > Plot: factor levels
together + histogram + normality plots with tests > ok
We moeten nagaan of de schaalscore inderdaad een normale verdeling heeft.
De skewness en Kurtosis-waarden moeten worden gedeeld door hun standaardfout. Om te
concluderen dat de verdeling ongeveer normaal is, moeten ze ergens tussen -1,96 en 1,96