Tonja Leten Wiskundige methoden en technieken Ba1 2021-2022
Wiskunde theorie
1
,Tonja Leten Wiskundige methoden en technieken Ba1 2021-2022
Wiskundige methoden en technieken
H1: Reële functies van één veranderlijke
n! = 1*2*3* … *n
0! = 1
Faculteit (-x)! = niet gedefinieerd
𝑥
(𝑦)! = niet gedefinieerd
𝑛 𝑛!
( )= 𝑘!(𝑛−𝑘)!
Combinaties 𝑘
𝑛
∑ 𝑥𝑖 = 𝑥𝑚 + 𝑥𝑚+1 + ⋯ + 𝑥𝑛−1 + 𝑥𝑛
𝑖=𝑚
Somsymbool 𝜮 Hierbij is i de sommatie-index, m is de ondergrens en n is de
bovengrens, de stapgrootte is altijd 1.
𝑛
∏ 𝑥𝑖 = 𝑥𝑚 ⋅ 𝑥𝑚+1 ⋅ … ⋅ 𝑥𝑛−1 ⋅ 𝑥𝑛
Productsymbool 𝑖=𝑚
𝜫 Hierbij is i de product-index, m is de ondergrens en n is de
bovengrens, de stapgrootte is altijd 1.
Een reële functie 𝑓 zal met elk element van een verzameling 𝐴 ⊂
ℝ één element van een verzameling 𝐵 ⊂ ℝ associëren.
Notatie: 𝑓𝐴 ⊂ ℝ → 𝐵 ⊂ ℝ ∶ 𝑥 → 𝑓(𝑥).
De verzameling 𝐴 noemt men het domein, dit is de verzameling
van alle x-waarde waarvoor een beeld 𝑓(𝑥) bestaat, we noteren
Domein/ bereik 𝐴 = 𝑑𝑜𝑚(𝑓).
De verzameling B noemt men het bereik, dit is de verzameling van
alle beelden 𝑓(𝑥), we noteren B = bereik(𝑓).
Wanneer we het functievoorschrift noteren als 𝑦 = 𝑓(𝑥), dan is 𝑥
de onafhankelijke veranderlijke of het argument, en y de
afhankelijke veranderlijke.
Men spreekt van een expliciete voorstelling van de functie 𝑓: ℝ →
ℝ , wanneer het voorschrift geëxpliciteerd is naar de afhankelijke
veranderlijke, m.a.w. al het voorschrift de vorm 𝑦 = 𝑓(𝑥) heeft.
Expliciet/
In het ander geval spreekt men van een impliciete voorstelling,
impliciet
het voorschrift is dan niet geëxpliciteerd naar de afhankelijke
veranderlijke, maar wordt impliciet bepaald uit het verband
𝐹(𝑥, 𝑦) = 0.
2
, Tonja Leten Wiskundige methoden en technieken Ba1 2021-2022
Een reële functie 𝑔: ℝ → ℝ: 𝑥 ↦ 𝑔(𝑥) is een stuksgewijs
Stuksgewijs gedefinieerde functie indien het voorschrift verschilt voor
gedefinieerd verschillende delen van het domein van de functie.
Een reële functie 𝑓: ℝ → ℝ: 𝑥 ↦ 𝑓(𝑥) is een even functie, indien
Even voor elke waarde 𝑥 uit het domein geldt: 𝑓(−𝑥) = 𝑓(𝑥).
Een reële functie 𝑓: ℝ → ℝ: 𝑥 ↦ 𝑓(𝑥) is een oneven functie, indien
voor elke waarde 𝑥 uit het domein geldt:
Oneven 𝑓(−𝑥) = −𝑓(𝑥).
De functie 𝑔: ℝ → ℝ: 𝑥 ↦ 𝑔(𝑥) is de inverse functie van de functie
𝑓: ℝ → ℝ: 𝑥 ↦ 𝑓(𝑥) indien voor elke waarde 𝑥 uit 𝑑𝑜𝑚(𝑓) =
𝑏ⅇ𝑟ⅇ𝑖𝑘(𝑔) en elke waarde y uit bereik(𝑔) = 𝑑𝑜𝑚(𝑔) geldt:
𝑓(𝑥) = 𝑦 ⇔ 𝑔(𝑦) = 𝑥.
Inverse functie
Deze inverse functie g zal bestaan indien elke y-waarde uit het
bereik van f het beeld is van precies één x-waarde uit het domein
van f. We noemen f in dit geval inverteerbaar.
Een reële functie ℎ: ℝ → ℝ: 𝑥 ↦ ℎ(𝑥) is een samenstelling van de
functies 𝑔: ℝ → ℝ: 𝑥 ↦ 𝑔(𝑥) na 𝑓: ℝ → ℝ: 𝑥 ↦ ℎ(𝑥) , of
Samengestelde ℎ =𝑔∘𝑓
functie
indien voor elke waarde van x geldt ℎ(𝑥) = (𝑔 ∘ 𝑓)(𝑥) = 𝑔(𝑓(𝑥)).
Een functie 𝑓: ℝ → ℝ: 𝑥 ↦ 𝑓(𝑥) bereikt in het punt 𝑥 = 𝑎 de
limietwaarde L, of
𝑙𝑖𝑚𝑓(𝑥) = 𝐿.
Limiet 𝑥→𝑎
Als de functiewaarde 𝑓(𝑥) willekeurig dicht bij L komen voor
punten x die dicht naar a naderen.
De linkerlimiet van een functie f in het punt x = a wordt
gedefinieerd als 𝐿1 = 𝑙𝑖𝑚 𝑓(𝑥)
𝑥< →𝑎
(de functiewaarden van f komen willekeurig dicht bij 𝐿1 voor
punten x kleiner dan a die dicht naar a naderen).
Linker- en
De rechtererlimiet van een functie f in het punt x = a wordt
rechterlimiet
gedefinieerd als 𝐿2 = 𝑙𝑖𝑚 𝑓(𝑥)
𝑥> →𝑎
(de functiewaarden van f komen willekeurig dicht bij 𝐿2 voor
punten x groter dan a die dicht naar a naderen).
Een functie 𝑓: ℝ → ℝ: 𝑥 ↦ 𝑓(𝑥) bereikt voor 𝑥 → +∞ de
limietwaarde 𝐿1 , of 𝑙𝑖𝑚 𝑓(𝑥) = 𝐿1 ,
𝑥→+∞
Als de functiewaarden 𝑓(𝑥) willekeurig dichtbij 𝐿1 komen voor
punten x die willekeurig groot worden.
Limiet naar
oneindig
Een functie 𝑓: ℝ → ℝ: 𝑥 ↦ 𝑓(𝑥) bereikt voor 𝑥 → −∞ de
limietwaarde 𝐿2 , of 𝑙𝑖𝑚 𝑓(𝑥) = 𝐿2 ,
𝑥→−∞
Als de functiewaarden 𝑓(𝑥) willekeurig dichtbij 𝐿2 komen voor
punten x die willekeurig klein worden.
3
Wiskunde theorie
1
,Tonja Leten Wiskundige methoden en technieken Ba1 2021-2022
Wiskundige methoden en technieken
H1: Reële functies van één veranderlijke
n! = 1*2*3* … *n
0! = 1
Faculteit (-x)! = niet gedefinieerd
𝑥
(𝑦)! = niet gedefinieerd
𝑛 𝑛!
( )= 𝑘!(𝑛−𝑘)!
Combinaties 𝑘
𝑛
∑ 𝑥𝑖 = 𝑥𝑚 + 𝑥𝑚+1 + ⋯ + 𝑥𝑛−1 + 𝑥𝑛
𝑖=𝑚
Somsymbool 𝜮 Hierbij is i de sommatie-index, m is de ondergrens en n is de
bovengrens, de stapgrootte is altijd 1.
𝑛
∏ 𝑥𝑖 = 𝑥𝑚 ⋅ 𝑥𝑚+1 ⋅ … ⋅ 𝑥𝑛−1 ⋅ 𝑥𝑛
Productsymbool 𝑖=𝑚
𝜫 Hierbij is i de product-index, m is de ondergrens en n is de
bovengrens, de stapgrootte is altijd 1.
Een reële functie 𝑓 zal met elk element van een verzameling 𝐴 ⊂
ℝ één element van een verzameling 𝐵 ⊂ ℝ associëren.
Notatie: 𝑓𝐴 ⊂ ℝ → 𝐵 ⊂ ℝ ∶ 𝑥 → 𝑓(𝑥).
De verzameling 𝐴 noemt men het domein, dit is de verzameling
van alle x-waarde waarvoor een beeld 𝑓(𝑥) bestaat, we noteren
Domein/ bereik 𝐴 = 𝑑𝑜𝑚(𝑓).
De verzameling B noemt men het bereik, dit is de verzameling van
alle beelden 𝑓(𝑥), we noteren B = bereik(𝑓).
Wanneer we het functievoorschrift noteren als 𝑦 = 𝑓(𝑥), dan is 𝑥
de onafhankelijke veranderlijke of het argument, en y de
afhankelijke veranderlijke.
Men spreekt van een expliciete voorstelling van de functie 𝑓: ℝ →
ℝ , wanneer het voorschrift geëxpliciteerd is naar de afhankelijke
veranderlijke, m.a.w. al het voorschrift de vorm 𝑦 = 𝑓(𝑥) heeft.
Expliciet/
In het ander geval spreekt men van een impliciete voorstelling,
impliciet
het voorschrift is dan niet geëxpliciteerd naar de afhankelijke
veranderlijke, maar wordt impliciet bepaald uit het verband
𝐹(𝑥, 𝑦) = 0.
2
, Tonja Leten Wiskundige methoden en technieken Ba1 2021-2022
Een reële functie 𝑔: ℝ → ℝ: 𝑥 ↦ 𝑔(𝑥) is een stuksgewijs
Stuksgewijs gedefinieerde functie indien het voorschrift verschilt voor
gedefinieerd verschillende delen van het domein van de functie.
Een reële functie 𝑓: ℝ → ℝ: 𝑥 ↦ 𝑓(𝑥) is een even functie, indien
Even voor elke waarde 𝑥 uit het domein geldt: 𝑓(−𝑥) = 𝑓(𝑥).
Een reële functie 𝑓: ℝ → ℝ: 𝑥 ↦ 𝑓(𝑥) is een oneven functie, indien
voor elke waarde 𝑥 uit het domein geldt:
Oneven 𝑓(−𝑥) = −𝑓(𝑥).
De functie 𝑔: ℝ → ℝ: 𝑥 ↦ 𝑔(𝑥) is de inverse functie van de functie
𝑓: ℝ → ℝ: 𝑥 ↦ 𝑓(𝑥) indien voor elke waarde 𝑥 uit 𝑑𝑜𝑚(𝑓) =
𝑏ⅇ𝑟ⅇ𝑖𝑘(𝑔) en elke waarde y uit bereik(𝑔) = 𝑑𝑜𝑚(𝑔) geldt:
𝑓(𝑥) = 𝑦 ⇔ 𝑔(𝑦) = 𝑥.
Inverse functie
Deze inverse functie g zal bestaan indien elke y-waarde uit het
bereik van f het beeld is van precies één x-waarde uit het domein
van f. We noemen f in dit geval inverteerbaar.
Een reële functie ℎ: ℝ → ℝ: 𝑥 ↦ ℎ(𝑥) is een samenstelling van de
functies 𝑔: ℝ → ℝ: 𝑥 ↦ 𝑔(𝑥) na 𝑓: ℝ → ℝ: 𝑥 ↦ ℎ(𝑥) , of
Samengestelde ℎ =𝑔∘𝑓
functie
indien voor elke waarde van x geldt ℎ(𝑥) = (𝑔 ∘ 𝑓)(𝑥) = 𝑔(𝑓(𝑥)).
Een functie 𝑓: ℝ → ℝ: 𝑥 ↦ 𝑓(𝑥) bereikt in het punt 𝑥 = 𝑎 de
limietwaarde L, of
𝑙𝑖𝑚𝑓(𝑥) = 𝐿.
Limiet 𝑥→𝑎
Als de functiewaarde 𝑓(𝑥) willekeurig dicht bij L komen voor
punten x die dicht naar a naderen.
De linkerlimiet van een functie f in het punt x = a wordt
gedefinieerd als 𝐿1 = 𝑙𝑖𝑚 𝑓(𝑥)
𝑥< →𝑎
(de functiewaarden van f komen willekeurig dicht bij 𝐿1 voor
punten x kleiner dan a die dicht naar a naderen).
Linker- en
De rechtererlimiet van een functie f in het punt x = a wordt
rechterlimiet
gedefinieerd als 𝐿2 = 𝑙𝑖𝑚 𝑓(𝑥)
𝑥> →𝑎
(de functiewaarden van f komen willekeurig dicht bij 𝐿2 voor
punten x groter dan a die dicht naar a naderen).
Een functie 𝑓: ℝ → ℝ: 𝑥 ↦ 𝑓(𝑥) bereikt voor 𝑥 → +∞ de
limietwaarde 𝐿1 , of 𝑙𝑖𝑚 𝑓(𝑥) = 𝐿1 ,
𝑥→+∞
Als de functiewaarden 𝑓(𝑥) willekeurig dichtbij 𝐿1 komen voor
punten x die willekeurig groot worden.
Limiet naar
oneindig
Een functie 𝑓: ℝ → ℝ: 𝑥 ↦ 𝑓(𝑥) bereikt voor 𝑥 → −∞ de
limietwaarde 𝐿2 , of 𝑙𝑖𝑚 𝑓(𝑥) = 𝐿2 ,
𝑥→−∞
Als de functiewaarden 𝑓(𝑥) willekeurig dichtbij 𝐿2 komen voor
punten x die willekeurig klein worden.
3